{"title":"Surface Covering of Antimony-Doped Tin Oxide on Titanium Dioxide and Resistivity Analysis","authors":"Ruizhi Gong, Yanfeng Gao, Zhang Chen, Kailing Zhang","doi":"10.4028/p-3m50z6","DOIUrl":null,"url":null,"abstract":"Functional nanocomposites have been widely studied in recent years. Because of its non-toxic and inexpensive properties, titanium dioxide has pervasive application value in the chemical industry. Nano-sized antimony-doped tin oxide (ATO) metallic oxide was developed and combined with a pure titanium dioxide substrate by the effective co-precipitation method. The obtained powder had good conductibility, and its carriers were supplied by the infiltrated Sb atoms in tin oxide crystal. In the present work, the calcination temperatures and molar ratio of tin (IV) chloride pentahydrate (SnCl4·5H2O) and antimony (III) chloride (SbCl3) were optimized for achieving excellent electrical performances. As a result, the sheet resistivity of Sb-SnO2/TiO2 was in the range from 9 kΩ·cm to 15 kΩ·cm. By mixing method, the resistance of Sb-SnO2/TiO2/PDMS could be as low as 2 MΩ.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"117 1","pages":"15 - 29"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-3m50z6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional nanocomposites have been widely studied in recent years. Because of its non-toxic and inexpensive properties, titanium dioxide has pervasive application value in the chemical industry. Nano-sized antimony-doped tin oxide (ATO) metallic oxide was developed and combined with a pure titanium dioxide substrate by the effective co-precipitation method. The obtained powder had good conductibility, and its carriers were supplied by the infiltrated Sb atoms in tin oxide crystal. In the present work, the calcination temperatures and molar ratio of tin (IV) chloride pentahydrate (SnCl4·5H2O) and antimony (III) chloride (SbCl3) were optimized for achieving excellent electrical performances. As a result, the sheet resistivity of Sb-SnO2/TiO2 was in the range from 9 kΩ·cm to 15 kΩ·cm. By mixing method, the resistance of Sb-SnO2/TiO2/PDMS could be as low as 2 MΩ.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.