A decisive characterization of BPP

Q4 Mathematics
Stathis Zachos, Hans Heller
{"title":"A decisive characterization of BPP","authors":"Stathis Zachos,&nbsp;Hans Heller","doi":"10.1016/S0019-9958(86)80044-4","DOIUrl":null,"url":null,"abstract":"<div><p>The complexity class BPP (defined by Gill) contains problems that can be solved in polynomial time with bounded error probability. A new and simple characterization of BPP is given. It is shown that a language <em>L</em> is in BPP iff (<em>x</em> ∈ <em>L</em> → ∃<sup>+</sup><em>y</em>∀<em>zP</em>(<em>x</em>, <em>y</em>, <em>z</em>)) ∧ (<em>x</em> ∉ <em>L</em> → ∀<em>y</em>∃<sup>+</sup> <em>z</em> ¬ <em>P</em>(<em>x</em>, <em>y</em>, <em>z</em>)) for a polynomial-time predicate <em>P</em> and for |<em>y</em>|, |<em>z</em>| ⩽ poly (|<em>x</em>|). The formula ∃<sup>+</sup> <em>yP</em>(<em>y</em>) with the random quantifier ∃<sup>+</sup> means that the probability Pr({<em>y</em>|<em>P</em>(<em>y</em>)}) ⩾+ ɛ for a fixed ɛ. This characterization allows a simple proof that BPP ⊆ ZPP<sup>NP</sup>, which strengthens the result of (Lautemann, <em>Inform. Process. Lett.</em> 17 (1983), 215–217; Sipser, <em>in</em> “Proceedings, 15th Annu. ACM Sympos. Theory of Comput.,” 1983, pp. 330–335) that BPP ⊆ Σ<sub>2</sub><sup><em>p</em></sup> ∩ Π<sub>2</sub><sup><em>p</em></sup>. Several other results about probabilistic classes can be proved using similar techniques, e.g., NP<sup>R</sup> ⊆ ZPP<sup>NP</sup> and Σ<sub>2</sub><sup><em>p</em>,BPP</sup> = Σ<sub>2</sub><sup><em>p</em></sup>.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"69 1","pages":"Pages 125-135"},"PeriodicalIF":0.0000,"publicationDate":"1986-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80044-4","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 53

Abstract

The complexity class BPP (defined by Gill) contains problems that can be solved in polynomial time with bounded error probability. A new and simple characterization of BPP is given. It is shown that a language L is in BPP iff (xL → ∃+yzP(x, y, z)) ∧ (xL → ∀y+ z ¬ P(x, y, z)) for a polynomial-time predicate P and for |y|, |z| ⩽ poly (|x|). The formula ∃+ yP(y) with the random quantifier ∃+ means that the probability Pr({y|P(y)}) ⩾+ ɛ for a fixed ɛ. This characterization allows a simple proof that BPP ⊆ ZPPNP, which strengthens the result of (Lautemann, Inform. Process. Lett. 17 (1983), 215–217; Sipser, in “Proceedings, 15th Annu. ACM Sympos. Theory of Comput.,” 1983, pp. 330–335) that BPP ⊆ Σ2p ∩ Π2p. Several other results about probabilistic classes can be proved using similar techniques, e.g., NPR ⊆ ZPPNP and Σ2p,BPP = Σ2p.

BPP的决定性特征
复杂性类BPP (Gill定义)包含可以在多项式时间内求解且错误概率有界的问题。给出了一种新的、简单的BPP表征。证明了语言L在BPP iff (x∈L→∃+y∀zP(x, y, z))∧(x∈L→∀y∃+ z ø P(x, y, z))中对于多项式时间谓词P和对于|y|, |z|≤poly (|x|)。公式∃+ yP(y)与随机量词∃+意味着Pr({y|P(y)})大于或等于一个固定的ν。这一特性可以简单地证明BPP≥ZPPNP,从而强化了劳特曼、Inform的结论。的过程。左17 (1983),215-217;Sipser,摘自《论文集》,第15期。ACM Sympos。《计算机理论》,”1983,pp. 330-335), BPP≥≥Σ2p∩Π2p。其他几个关于概率类的结果也可以用类似的方法得到证明,如:NPR≥ZPPNP, Σ2p,BPP = Σ2p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信