{"title":"Investigation of the biological activity of the water-soluble C60/poly-N-vinylpyrrolidone complex","authors":"N. Loginova, Yu. S. Chesovskikh, V. B. Borodulin","doi":"10.32362/2410-6593-2022-17-6-492-503","DOIUrl":null,"url":null,"abstract":"Objectives. The study aimed to investigate the biological activity of the C60/poly-N-vinylpyrrolidone (C60/PVP) complex representing a water-soluble fullerene derivative. In vitro and in vivo techniques were used to analyze the effect of the C60/PVP complex on the activity of lactate dehydrogenase (LDH) and evaluate changes in the biochemical parameters of blood serum when per os administered to mice.Methods. In order to determine the activity of a commercial LDH preparation and study the kinetics of this process, the standard Warburg photometric method was used. To assess the effect of polyvinylpyrrolidone (PVP) and the C60/PVP complex on some biochemical parameters in vivo, a study was conducted on two-month-old male white mongrel mice weighing 20 ± 3 g. Determination of biochemical parameters of blood serum was carried out using a semi-automatic biochemical analyzer according to standard methods.Results. The effect of the C60/PVP complex on LDH activity was studied along with changes in the biochemical parameters of mouse blood serum characterizing carbohydrate metabolism. As well as increasing the glucose and pyruvic acid content, the C60/PVP complex was found to reduce lactate content and LDH activity in blood serum along with in vitro LDH activity according to the type of mixed inhibition.Conclusions. The C60/PVP complex and PVP were shown to exhibit biological activity in vitro and in vivo. The C60/PVP complex, representing a mixed-type LDH inhibitor, was shown to inhibit LDH activity, as well as contributing to a decrease in lactate concentration and an increase in the concentration of pyruvic acid and glucose in blood serum when administered per os to mice. The inhibitory effect of PVP on LDH activity was revealed in both in vivo and in vitro investigations. In vivo, PVP contributes to a decrease in the concentration of lactate in the blood. The less pronounced effect of the C60/PVP complex as compared to PVP alone may be due to the fact that C60 molecules are “hidden” in cavities formed in PVP molecules.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2022-17-6-492-503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives. The study aimed to investigate the biological activity of the C60/poly-N-vinylpyrrolidone (C60/PVP) complex representing a water-soluble fullerene derivative. In vitro and in vivo techniques were used to analyze the effect of the C60/PVP complex on the activity of lactate dehydrogenase (LDH) and evaluate changes in the biochemical parameters of blood serum when per os administered to mice.Methods. In order to determine the activity of a commercial LDH preparation and study the kinetics of this process, the standard Warburg photometric method was used. To assess the effect of polyvinylpyrrolidone (PVP) and the C60/PVP complex on some biochemical parameters in vivo, a study was conducted on two-month-old male white mongrel mice weighing 20 ± 3 g. Determination of biochemical parameters of blood serum was carried out using a semi-automatic biochemical analyzer according to standard methods.Results. The effect of the C60/PVP complex on LDH activity was studied along with changes in the biochemical parameters of mouse blood serum characterizing carbohydrate metabolism. As well as increasing the glucose and pyruvic acid content, the C60/PVP complex was found to reduce lactate content and LDH activity in blood serum along with in vitro LDH activity according to the type of mixed inhibition.Conclusions. The C60/PVP complex and PVP were shown to exhibit biological activity in vitro and in vivo. The C60/PVP complex, representing a mixed-type LDH inhibitor, was shown to inhibit LDH activity, as well as contributing to a decrease in lactate concentration and an increase in the concentration of pyruvic acid and glucose in blood serum when administered per os to mice. The inhibitory effect of PVP on LDH activity was revealed in both in vivo and in vitro investigations. In vivo, PVP contributes to a decrease in the concentration of lactate in the blood. The less pronounced effect of the C60/PVP complex as compared to PVP alone may be due to the fact that C60 molecules are “hidden” in cavities formed in PVP molecules.