{"title":"A novel polarization independent transmissive type frequency selective surface for WiFi, WiMax & WLAN applications","authors":"Shweta Garg, S. Yadav","doi":"10.1109/COMPTELIX.2017.8003967","DOIUrl":null,"url":null,"abstract":"A novel polarization independent transmissive type frequency selective surface has been designed for three applications, these are WiFi, WiMax and WLAN. The uses of these applications are increasing day by day so it is important to enhance the working quality of such applications. In this paper a novel FSS has been designed based on these applications using FR4 Epoxy substrate having dielectric constant 4.4 and tangent loss 0.025. The designed FSS is working as both bandpass filter resonating at 2.5, 3.5 & 5.5 GHz frequencies and bandstop filter resonating at 3 and 4.3 GHz. In the design of proposed FSS, it consists of three different shape aperture elements which are creviced into metallic sheet placed on dielectric substrate and the 8×8 array has been proposed in the paper. For the whole structure simulation microwave software (CST MW studio and Ansys HFSS electromagnetic software) has been used. In this paper parametric analysis of theta and phi have been also shown which represents polarization performance of the proposed design. The simulated results show that about 95% of power is reflected by the FSS sheet. The proposed filter has advantage of resonating at multiple frequencies, polarization independent & wide in bandwidth. At the end proposed design is also verified in ANSYS HFSS software and the results are slightly varied at higher resonating frequency.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"71 1","pages":"216-220"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8003967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A novel polarization independent transmissive type frequency selective surface has been designed for three applications, these are WiFi, WiMax and WLAN. The uses of these applications are increasing day by day so it is important to enhance the working quality of such applications. In this paper a novel FSS has been designed based on these applications using FR4 Epoxy substrate having dielectric constant 4.4 and tangent loss 0.025. The designed FSS is working as both bandpass filter resonating at 2.5, 3.5 & 5.5 GHz frequencies and bandstop filter resonating at 3 and 4.3 GHz. In the design of proposed FSS, it consists of three different shape aperture elements which are creviced into metallic sheet placed on dielectric substrate and the 8×8 array has been proposed in the paper. For the whole structure simulation microwave software (CST MW studio and Ansys HFSS electromagnetic software) has been used. In this paper parametric analysis of theta and phi have been also shown which represents polarization performance of the proposed design. The simulated results show that about 95% of power is reflected by the FSS sheet. The proposed filter has advantage of resonating at multiple frequencies, polarization independent & wide in bandwidth. At the end proposed design is also verified in ANSYS HFSS software and the results are slightly varied at higher resonating frequency.