{"title":"Parallelization Efficiency of the Elongation Method and its Application to NLO Design for Urea Crystal","authors":"K. Naka, F. Gu, Y. Aoki, S. Ohnishi","doi":"10.1163/157404007782913363","DOIUrl":null,"url":null,"abstract":"The elongation method designed for calculating the electronic structures of aperiodic polymers has been investigated in parallelization efficiency. The elongation finite-field method for determining (hypper)polarizabilities has been successfully applied to the three-dimensional urea crystal and its derivatives. It is shown that the elongation-FF method is suitable to large-scale calculations with parallelization and a powerful tool for nonlinear optical material designing.","PeriodicalId":101169,"journal":{"name":"Soft Computing Letters","volume":"64 1","pages":"231-241"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/157404007782913363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The elongation method designed for calculating the electronic structures of aperiodic polymers has been investigated in parallelization efficiency. The elongation finite-field method for determining (hypper)polarizabilities has been successfully applied to the three-dimensional urea crystal and its derivatives. It is shown that the elongation-FF method is suitable to large-scale calculations with parallelization and a powerful tool for nonlinear optical material designing.