{"title":"Multilateral force feedback control using dynamical modal transformation","authors":"W. Yamanouchi, S. Katsura","doi":"10.1109/AMC.2012.6197126","DOIUrl":null,"url":null,"abstract":"Recent advances in control technology have contributed to the development of robot systems for communication. Robot systems recognize their environment on the basis of audio-visual information. Recognition methods based on audio-visual feedback have been developed by many researchers. Apart from auditory and visual information, haptic information has recently attracted attention as the third type of multimedia information. The sense of touch is useful for remote manipulation. Feedback of haptic information is realized by bilateral control. Most systems are constructed using a master-slave system in which the master-slave systems have the same mechanical structure. However, we proposed force feedback systems with different mechanical structures. Previous research proposed novel transformation matrix for different mechanical structures including Laplace operator. In this research, effect of integro-differential scaling for proposed modal transformation is verified to experiment.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"145 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Recent advances in control technology have contributed to the development of robot systems for communication. Robot systems recognize their environment on the basis of audio-visual information. Recognition methods based on audio-visual feedback have been developed by many researchers. Apart from auditory and visual information, haptic information has recently attracted attention as the third type of multimedia information. The sense of touch is useful for remote manipulation. Feedback of haptic information is realized by bilateral control. Most systems are constructed using a master-slave system in which the master-slave systems have the same mechanical structure. However, we proposed force feedback systems with different mechanical structures. Previous research proposed novel transformation matrix for different mechanical structures including Laplace operator. In this research, effect of integro-differential scaling for proposed modal transformation is verified to experiment.