SC: Hardware approaches to machine learning and inference

D. Friedman
{"title":"SC: Hardware approaches to machine learning and inference","authors":"D. Friedman","doi":"10.1109/ISSCC.2018.8310415","DOIUrl":null,"url":null,"abstract":"Advances in artificial intelligence are already changing how computing systems interact with users and interact with their environments, with further dramatic changes on the horizon. In this context, machine learning and inference operations have become a critically important computational workload, and the importance of this workload will continue to increase. Today, GPU-, CPU-, and FPGA-based engines dominate the compute landscape for learning and for inference, but the exploration of alternative, enhanced, or complementary compute capability in this problem space is an active and growing research area. In this short course, we will provide a framework for understanding some of the computational challenges in machine learning and inference and discuss emerging technical approaches aimed at meeting those challenges.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"19 1","pages":"533-534"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Advances in artificial intelligence are already changing how computing systems interact with users and interact with their environments, with further dramatic changes on the horizon. In this context, machine learning and inference operations have become a critically important computational workload, and the importance of this workload will continue to increase. Today, GPU-, CPU-, and FPGA-based engines dominate the compute landscape for learning and for inference, but the exploration of alternative, enhanced, or complementary compute capability in this problem space is an active and growing research area. In this short course, we will provide a framework for understanding some of the computational challenges in machine learning and inference and discuss emerging technical approaches aimed at meeting those challenges.
SC:机器学习和推理的硬件方法
人工智能的进步已经改变了计算系统与用户以及与环境交互的方式,未来还会发生更大的变化。在这种背景下,机器学习和推理操作已经成为一个至关重要的计算工作负载,并且这个工作负载的重要性将继续增加。今天,基于GPU、CPU和fpga的引擎在学习和推理的计算领域占据主导地位,但在这个问题空间中探索替代、增强或互补的计算能力是一个活跃且不断发展的研究领域。在这个短期课程中,我们将提供一个框架来理解机器学习和推理中的一些计算挑战,并讨论旨在应对这些挑战的新兴技术方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信