{"title":"Some strong limit theorems for weighted sums of measurable operators","authors":"N. V. Huan, N. Quang","doi":"10.1142/s0219025721500223","DOIUrl":null,"url":null,"abstract":"The aim of this study is to provide some strong limit theorems for weighted sums of measurable operators. The almost uniform convergence and the bilateral almost uniform convergence are considered. As a result, we derive the strong law of large numbers for sequences of successively independent identically distributed measurable operators without using the noncommutative version of Kolmogorov’s inequality.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"77 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025721500223","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to provide some strong limit theorems for weighted sums of measurable operators. The almost uniform convergence and the bilateral almost uniform convergence are considered. As a result, we derive the strong law of large numbers for sequences of successively independent identically distributed measurable operators without using the noncommutative version of Kolmogorov’s inequality.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.