{"title":"Indecomposable $K_1$ classes on a Surface and Membrane Integrals","authors":"Xi Chen, James D. Lewis, G. Pearlstein","doi":"10.5802/crmath.69","DOIUrl":null,"url":null,"abstract":"Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"18 1","pages":"511-513"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.69","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.