Indecomposable $K_1$ classes on a Surface and Membrane Integrals

Pub Date : 2020-07-28 DOI:10.5802/crmath.69
Xi Chen, James D. Lewis, G. Pearlstein
{"title":"Indecomposable $K_1$ classes on a Surface and Membrane Integrals","authors":"Xi Chen, James D. Lewis, G. Pearlstein","doi":"10.5802/crmath.69","DOIUrl":null,"url":null,"abstract":"Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.
分享
查看原文
表面和膜积分上不可分解的$K_1$类
设X是一个射影代数曲面。我们回顾了不可分解物的K -族K(2) 1,和(X),并提供了证据,证明膜积分足以检测这些不可分解物。的简历。因此,X是一个曲面,它是可变的。K组,K(2) 1,和(X)组的可组合材料和appoter组的可组合材料有两个不同的类别,即不同类型的可组合材料和不同类型的可组合材料。2020数学学科分类。14C25, 14C30, 14C35。资金。X. Chen和J. D. Lewis得到加拿大自然科学与工程研究委员会的部分资助。收稿日期2019年12月9日,收稿日期2020年5月7日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信