Holiest minimum-cost paths and flows in surface graphs

Jeff Erickson, K. Fox, Luvsandondov Lkhamsuren
{"title":"Holiest minimum-cost paths and flows in surface graphs","authors":"Jeff Erickson, K. Fox, Luvsandondov Lkhamsuren","doi":"10.1145/3188745.3188904","DOIUrl":null,"url":null,"abstract":"Let G be an edge-weighted directed graph with n vertices embedded on an orientable surface of genus g. We describe a simple deterministic lexicographic perturbation scheme that guarantees uniqueness of minimum-cost flows and shortest paths in G. The perturbations take O(gn) time to compute. We use our perturbation scheme in a black box manner to derive a deterministic O(n loglogn) time algorithm for minimum cut in directed edge-weighted planar graphs and a deterministic O(g2 n logn) time proprocessing scheme for the multiple-source shortest paths problem of computing a shortest path oracle for all vertices lying on a common face of a surface embedded graph. The latter result yields faster deterministic near-linear time algorithms for a variety of problems in constant genus surface embedded graphs. Finally, we open the black box in order to generalize a recent linear-time algorithm for multiple-source shortest paths in unweighted undirected planar graphs to work in arbitrary orientable surfaces. Our algorithm runs in O(g2 n logg) time in this setting, and it can be used to give improved linear time algorithms for several problems in unweighted undirected surface embedded graphs of constant genus including the computation of minimum cuts, shortest topologically non-trivial cycles, and minimum homology bases.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Let G be an edge-weighted directed graph with n vertices embedded on an orientable surface of genus g. We describe a simple deterministic lexicographic perturbation scheme that guarantees uniqueness of minimum-cost flows and shortest paths in G. The perturbations take O(gn) time to compute. We use our perturbation scheme in a black box manner to derive a deterministic O(n loglogn) time algorithm for minimum cut in directed edge-weighted planar graphs and a deterministic O(g2 n logn) time proprocessing scheme for the multiple-source shortest paths problem of computing a shortest path oracle for all vertices lying on a common face of a surface embedded graph. The latter result yields faster deterministic near-linear time algorithms for a variety of problems in constant genus surface embedded graphs. Finally, we open the black box in order to generalize a recent linear-time algorithm for multiple-source shortest paths in unweighted undirected planar graphs to work in arbitrary orientable surfaces. Our algorithm runs in O(g2 n logg) time in this setting, and it can be used to give improved linear time algorithms for several problems in unweighted undirected surface embedded graphs of constant genus including the computation of minimum cuts, shortest topologically non-trivial cycles, and minimum homology bases.
曲面图中最神圣的最小代价路径和流
设G是一个边加权有向图,其中n个顶点嵌入在G属的可定向表面上。我们描述了一个简单的确定性字典摄动方案,它保证了G中最小代价流和最短路径的唯一性。摄动需要O(gn)时间来计算。我们以黑盒方式使用我们的摄动格式导出了一个确定的O(n logn)时间算法,用于有向边加权平面图中的最小切割,以及一个确定的O(g2 n logn)时间处理方案,用于计算位于表面嵌入图的公共面上的所有顶点的最短路径oracle的多源最短路径问题。后一种结果为常属曲面嵌入图的各种问题提供了更快的确定性近线性时间算法。最后,我们打开黑盒子,以推广最近的一种线性时间算法,该算法适用于无加权无向平面图中的多源最短路径,适用于任意可定向曲面。在这种情况下,我们的算法在O(g2 n log)时间内运行,并且它可以用于在常数属的无加权无向曲面嵌入图中提供改进的线性时间算法,包括最小切割,最短拓扑非平凡循环和最小同调基的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信