Measuring tail risks

Q1 Mathematics
Kan Chen , Tuoyuan Cheng
{"title":"Measuring tail risks","authors":"Kan Chen ,&nbsp;Tuoyuan Cheng","doi":"10.1016/j.jfds.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Value-at-Risk (VaR) and Expected Shortfall (ES) are common high quantile-based risk measures adopted in financial regulations and risk management. In this paper, we propose a tail risk measure based on the most probable maximum size of risk events (MPMR) that can occur over a length of time. MPMR underscores the dependence of the tail risk on the risk management time frame. Unlike VaR and ES, MPMR does not require specifying a confidence level. We derive the risk measure analytically for several well-known distributions. In particular, for the case where the size of the risk event follows a power law or Pareto distribution, we show that MPMR also scales with the number of observations <em>n</em> (or equivalently the length of the time interval) by a power law, MPMR(<em>n</em>) ∝ <em>n</em><sup><em>η</em></sup>, where <em>η</em> is the scaling exponent (SE). The scale invariance allows for reasonable estimations of long-term risks based on the extrapolation of more reliable estimations of short-term risks. The scaling relationship also gives rise to a robust and low-bias estimator of the tail index (TI) <em>ξ</em> of the size distribution, <em>ξ</em> = 1/<em>η</em>. We demonstrate the use of this risk measure for describing the tail risks in financial markets as well as the risks associated with natural hazards (earthquakes, tsunamis, and excessive rainfall).</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"8 ","pages":"Pages 296-308"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918822000149/pdfft?md5=22762ee9804242ec67f2a03b85dba7c0&pid=1-s2.0-S2405918822000149-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918822000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Value-at-Risk (VaR) and Expected Shortfall (ES) are common high quantile-based risk measures adopted in financial regulations and risk management. In this paper, we propose a tail risk measure based on the most probable maximum size of risk events (MPMR) that can occur over a length of time. MPMR underscores the dependence of the tail risk on the risk management time frame. Unlike VaR and ES, MPMR does not require specifying a confidence level. We derive the risk measure analytically for several well-known distributions. In particular, for the case where the size of the risk event follows a power law or Pareto distribution, we show that MPMR also scales with the number of observations n (or equivalently the length of the time interval) by a power law, MPMR(n) ∝ nη, where η is the scaling exponent (SE). The scale invariance allows for reasonable estimations of long-term risks based on the extrapolation of more reliable estimations of short-term risks. The scaling relationship also gives rise to a robust and low-bias estimator of the tail index (TI) ξ of the size distribution, ξ = 1/η. We demonstrate the use of this risk measure for describing the tail risks in financial markets as well as the risks associated with natural hazards (earthquakes, tsunamis, and excessive rainfall).

衡量尾部风险
风险价值(VaR)和预期损失(ES)是金融法规和风险管理中常用的基于高分位数的风险度量。在本文中,我们提出了一种基于在一段时间内可能发生的风险事件的最可能最大规模(MPMR)的尾部风险度量。MPMR强调了尾部风险对风险管理时间框架的依赖性。与VaR和ES不同,MPMR不需要指定置信水平。我们对几个已知的分布进行了风险度量分析。特别是,对于风险事件的大小遵循幂律或帕累托分布的情况,我们表明MPMR也通过幂律MPMR(n)∝nη(其中η为标度指数(SE))随观测数n(或等效的时间间隔长度)的变化而变化。尺度不变性允许在更可靠的短期风险估计外推的基础上对长期风险进行合理估计。该标度关系还产生了尺寸分布的尾指数(TI) ξ的稳健和低偏差估计,ξ = 1/η。我们演示了使用这种风险度量来描述金融市场中的尾部风险以及与自然灾害(地震、海啸和过度降雨)相关的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信