{"title":"Borel combinatorics fail in HYP","authors":"H. Towsner, Rose Weisshaar, L. Westrick","doi":"10.1142/s0219061322500234","DOIUrl":null,"url":null,"abstract":"We characterize the completely determined Borel subsets of HYP as exactly the omega_1^{ck} subsets of HYP. As a result, HYP believes there is a Borel well-ordering of the reals, that the Borel Dual Ramsey Theorem fails, and that every Borel d-regular bipartite graph has a Borel perfect matching, among other examples. Therefore, the Borel Dual Ramsey Theorem and several theorems of descriptive combinatorics are not theories of hyperarithmetic analysis. In the case of the Borel Dual Ramsey Theorem, this answers a question of Astor, Dzhafarov, Montalban, Solomon&the third author.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"74 1","pages":"2250023:1-2250023:19"},"PeriodicalIF":0.9000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We characterize the completely determined Borel subsets of HYP as exactly the omega_1^{ck} subsets of HYP. As a result, HYP believes there is a Borel well-ordering of the reals, that the Borel Dual Ramsey Theorem fails, and that every Borel d-regular bipartite graph has a Borel perfect matching, among other examples. Therefore, the Borel Dual Ramsey Theorem and several theorems of descriptive combinatorics are not theories of hyperarithmetic analysis. In the case of the Borel Dual Ramsey Theorem, this answers a question of Astor, Dzhafarov, Montalban, Solomon&the third author.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.