PLANC

Srinivas Eswar, Koby Hayashi, Grey Ballard, R. Kannan, Michael A. Matheson, Haesun Park
{"title":"PLANC","authors":"Srinivas Eswar, Koby Hayashi, Grey Ballard, R. Kannan, Michael A. Matheson, Haesun Park","doi":"10.1145/3432185","DOIUrl":null,"url":null,"abstract":"We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for example, to discover latent patterns in video and imaging applications. As the size of data sets grows, single workstations are hitting bottlenecks in both computation time and available memory. We propose a distributed-memory parallel computing solution to handle massive data sets, loading the input data across the memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-rank approximation. We present a software package called Parallel Low-rank Approximation with Nonnegativity Constraints, which implements our solution and allows for extension in terms of data (dense or sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternating direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary communication and computation, show how to extend the software to include new algorithms and/or constraints, and report efficiency and scalability results for both synthetic and real-world data sets.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"83 1","pages":"1 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3432185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for example, to discover latent patterns in video and imaging applications. As the size of data sets grows, single workstations are hitting bottlenecks in both computation time and available memory. We propose a distributed-memory parallel computing solution to handle massive data sets, loading the input data across the memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-rank approximation. We present a software package called Parallel Low-rank Approximation with Nonnegativity Constraints, which implements our solution and allows for extension in terms of data (dense or sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternating direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary communication and computation, show how to extend the software to include new algorithms and/or constraints, and report efficiency and scalability results for both synthetic and real-world data sets.
我们考虑了大量密集非负张量数据的低秩逼近问题,例如,在视频和成像应用中发现潜在模式。随着数据集规模的增长,单个工作站在计算时间和可用内存方面都遇到了瓶颈。我们提出了一种分布式内存并行计算解决方案来处理大量数据集,跨多个节点的内存加载输入数据,并执行高效和可扩展的并行算法来计算低秩近似。我们提出了一个软件包,称为具有非负性约束的并行低秩近似,它实现了我们的解决方案,并允许在数据(密集或稀疏,矩阵或任意顺序的张量),算法(例如,从乘法更新技术到乘法器的交替方向方法)和架构(我们利用gpu来加速这项工作中的计算)方面进行扩展。我们描述了我们的并行分布和算法,它们小心地避免了不必要的通信和计算,展示了如何扩展软件以包含新的算法和/或约束,并报告了合成和真实数据集的效率和可扩展性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信