Fast Proposals for Image and Video Annotation Using Modified Echo State Networks

Sohini Roychowdhury, L. S. Muppirisetty
{"title":"Fast Proposals for Image and Video Annotation Using Modified Echo State Networks","authors":"Sohini Roychowdhury, L. S. Muppirisetty","doi":"10.1109/ICMLA.2018.00199","DOIUrl":null,"url":null,"abstract":"Deep learning frameworks for computer-vision applications require fast and scalable annotation systems. Since manually annotated data for semantic segmentation tasks is time-consuming and tough to quality assure, accurate and automated region-based proposals can significantly aid high quality data annotation. In this work, we propose modified Echo State Network (ESN) models that iteratively learn from a small subset of data (20-30% images) and adapt to a variety of semantic segmentation goals without manual supervision on test images. We observe that the modified ESN model that relies on 3 x 3 pixel neighborhood features scales across segmentation tasks with mean segmentation F_scores in the range of 0.58-0.87 for complete foreground and specific foreground segmentation tasks, respectively. Thus, the proposed methods can be specifically useful for fast semantic proposal estimation to enhance the annotation resourcefulness for time sensitive applications in the automotive field.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"80 1","pages":"1225-1230"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning frameworks for computer-vision applications require fast and scalable annotation systems. Since manually annotated data for semantic segmentation tasks is time-consuming and tough to quality assure, accurate and automated region-based proposals can significantly aid high quality data annotation. In this work, we propose modified Echo State Network (ESN) models that iteratively learn from a small subset of data (20-30% images) and adapt to a variety of semantic segmentation goals without manual supervision on test images. We observe that the modified ESN model that relies on 3 x 3 pixel neighborhood features scales across segmentation tasks with mean segmentation F_scores in the range of 0.58-0.87 for complete foreground and specific foreground segmentation tasks, respectively. Thus, the proposed methods can be specifically useful for fast semantic proposal estimation to enhance the annotation resourcefulness for time sensitive applications in the automotive field.
基于改进回声状态网络的图像和视频标注快速方案
计算机视觉应用的深度学习框架需要快速和可扩展的注释系统。由于手动标注语义分割任务的数据耗时且难以保证质量,准确和自动化的基于区域的建议可以显着帮助高质量的数据标注。在这项工作中,我们提出了改进的回声状态网络(ESN)模型,该模型从一小部分数据(20-30%的图像)中迭代学习,并适应各种语义分割目标,而无需对测试图像进行人工监督。我们观察到,基于3 × 3像素邻域特征的改进回声状态网络模型在完整前景和特定前景分割任务上的分割F_scores均值分别在0.58 ~ 0.87之间。因此,所提出的方法可用于快速语义建议估计,以增强汽车领域中时间敏感应用的标注资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信