J. Gil, Ji-Hoon Kim, Chun-Suk Kim, Chulhyun Park, Jungsu Park, Hyejin Park, Hyeji Lee, Sung-Jae Lee, Young-Ho Jang, M. Koo, Y. W. Kwon, I. Song
{"title":"A fully-integrated low-power high-coexistence 2.4-GHz ZigBee transceiver for biomedicai applications","authors":"J. Gil, Ji-Hoon Kim, Chun-Suk Kim, Chulhyun Park, Jungsu Park, Hyejin Park, Hyeji Lee, Sung-Jae Lee, Young-Ho Jang, M. Koo, Y. W. Kwon, I. Song","doi":"10.1109/IMWS-BIO.2013.6756235","DOIUrl":null,"url":null,"abstract":"The ZigBee technology based on IEEE 802.15.4 is widespread use of biomedical applications providing wireless networks. A fully integrated low-power 2.4GHz ZigBee transceiver implemented in CMOS technology is demonstrated. It has RF and analog front-ends, a frequency synthesizer, and digital modulator and demodulator compliant to IEEE 802.15.4. The direct-modulation using fractional-N synthesizer is adopted as transmitter architecture. The transmitter provides high output power of +9dBm and excellent EVM of 5.1%. The direct conversion architecture uses in receiver. Receiver sensitivity is -97dBm. Current consumption for continuous TX transmission at +9dBm output power is 28.2mA and for continuous RX reception is 16mA. Excellence coexistence performance is presented by studying WLAN interferer rejection.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"80 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The ZigBee technology based on IEEE 802.15.4 is widespread use of biomedical applications providing wireless networks. A fully integrated low-power 2.4GHz ZigBee transceiver implemented in CMOS technology is demonstrated. It has RF and analog front-ends, a frequency synthesizer, and digital modulator and demodulator compliant to IEEE 802.15.4. The direct-modulation using fractional-N synthesizer is adopted as transmitter architecture. The transmitter provides high output power of +9dBm and excellent EVM of 5.1%. The direct conversion architecture uses in receiver. Receiver sensitivity is -97dBm. Current consumption for continuous TX transmission at +9dBm output power is 28.2mA and for continuous RX reception is 16mA. Excellence coexistence performance is presented by studying WLAN interferer rejection.