Pooria Namyar, Sucha Supittayapornpong, Mingyang Zhang, Minlan Yu, R. Govindan
{"title":"A throughput-centric view of the performance of datacenter topologies","authors":"Pooria Namyar, Sucha Supittayapornpong, Mingyang Zhang, Minlan Yu, R. Govindan","doi":"10.1145/3452296.3472913","DOIUrl":null,"url":null,"abstract":"While prior work has explored many proposed datacenter designs, only two designs, Clos-based and expander-based, are generally considered practical because they can scale using commodity switching chips. Prior work has used two different metrics, bisection bandwidth and throughput, for evaluating these topologies at scale. Little is known, theoretically or practically, how these metrics relate to each other. Exploiting characteristics of these topologies, we prove an upper bound on their throughput, then show that this upper bound better estimates worst-case throughput than all previously proposed throughput estimators and scales better than most of them. Using this upper bound, we show that for expander-based topologies, unlike Clos, beyond a certain size of the network, no topology can have full throughput, even if it has full bisection bandwidth; in fact, even relatively small expander-based topologies fail to achieve full throughput. We conclude by showing that using throughput to evaluate datacenter performance instead of bisection bandwidth can alter conclusions in prior work about datacenter cost, manageability, and reliability.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
While prior work has explored many proposed datacenter designs, only two designs, Clos-based and expander-based, are generally considered practical because they can scale using commodity switching chips. Prior work has used two different metrics, bisection bandwidth and throughput, for evaluating these topologies at scale. Little is known, theoretically or practically, how these metrics relate to each other. Exploiting characteristics of these topologies, we prove an upper bound on their throughput, then show that this upper bound better estimates worst-case throughput than all previously proposed throughput estimators and scales better than most of them. Using this upper bound, we show that for expander-based topologies, unlike Clos, beyond a certain size of the network, no topology can have full throughput, even if it has full bisection bandwidth; in fact, even relatively small expander-based topologies fail to achieve full throughput. We conclude by showing that using throughput to evaluate datacenter performance instead of bisection bandwidth can alter conclusions in prior work about datacenter cost, manageability, and reliability.