Generalized chain surgeries and applications

IF 0.6 3区 数学 Q3 MATHEMATICS
Anar Akhmedov, cCaugri Karakurt, Sumeyra Sakalli
{"title":"Generalized chain surgeries and applications","authors":"Anar Akhmedov, cCaugri Karakurt, Sumeyra Sakalli","doi":"10.4310/jsg.2021.v19.n5.a1","DOIUrl":null,"url":null,"abstract":"We describe the Stein handlebody diagrams of Milnor fibers of Brieskorn singularities $x^p + y^q + z^r = 0$. We also study the natural symplectic operation by exchanging two Stein fillings of the canonical contact structure on the links in the case $p = q = r$, where one of the fillings comes from the minimal resolution and the other is the Milnor fiber. We give two different interpretations of this operation, one as a symplectic sum and the other as a monodromy substitution in a Lefschetz fibration.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"80 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n5.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the Stein handlebody diagrams of Milnor fibers of Brieskorn singularities $x^p + y^q + z^r = 0$. We also study the natural symplectic operation by exchanging two Stein fillings of the canonical contact structure on the links in the case $p = q = r$, where one of the fillings comes from the minimal resolution and the other is the Milnor fiber. We give two different interpretations of this operation, one as a symplectic sum and the other as a monodromy substitution in a Lefschetz fibration.
广义连锁手术及其应用
我们描述了Brieskorn奇点(x^p + y^q + z^r = 0)的Milnor纤维的Stein柄体图。在p = q = r$的情况下,我们通过交换两个正则接触结构的Stein填充来研究自然辛运算,其中一个填充来自最小分辨率,另一个是Milnor纤维。我们对这个操作给出了两种不同的解释,一种是辛和,另一种是Lefschetz振动中的单变量替换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信