The NF-Number of a Simplicial Complex

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000451
T. Hibi, H. Mahmood
{"title":"The NF-Number of a Simplicial Complex","authors":"T. Hibi, H. Mahmood","doi":"10.1142/s1005386722000451","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a simplicial complex on [Formula: see text]. The [Formula: see text]-complex of [Formula: see text] is the simplicial complex [Formula: see text] on [Formula: see text] for which the facet ideal of [Formula: see text] is equal to the Stanley–Reisner ideal of [Formula: see text]. Furthermore, for each [Formula: see text], we introduce the [Formula: see text]th [Formula: see text]-complex [Formula: see text], which is inductively defined as [Formula: see text] by setting [Formula: see text]. One can set [Formula: see text]. The [Formula: see text]-number of [Formula: see text] is the smallest integer [Formula: see text] for which [Formula: see text]. In the present paper we are especially interested in the [Formula: see text]-number of a finite graph, which can be regraded as a simplicial complex of dimension one. It is shown that the [Formula: see text]-number of the finite graph [Formula: see text] on [Formula: see text], which is the disjoint union of the complete graphs [Formula: see text] on [Formula: see text] and [Formula: see text] on [Formula: see text] for [Formula: see text] and [Formula: see text] with [Formula: see text], is equal to [Formula: see text]. As a corollary, we find that the [Formula: see text]-number of the complete bipartite graph [Formula: see text] on [Formula: see text] is also equal to [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let [Formula: see text] be a simplicial complex on [Formula: see text]. The [Formula: see text]-complex of [Formula: see text] is the simplicial complex [Formula: see text] on [Formula: see text] for which the facet ideal of [Formula: see text] is equal to the Stanley–Reisner ideal of [Formula: see text]. Furthermore, for each [Formula: see text], we introduce the [Formula: see text]th [Formula: see text]-complex [Formula: see text], which is inductively defined as [Formula: see text] by setting [Formula: see text]. One can set [Formula: see text]. The [Formula: see text]-number of [Formula: see text] is the smallest integer [Formula: see text] for which [Formula: see text]. In the present paper we are especially interested in the [Formula: see text]-number of a finite graph, which can be regraded as a simplicial complex of dimension one. It is shown that the [Formula: see text]-number of the finite graph [Formula: see text] on [Formula: see text], which is the disjoint union of the complete graphs [Formula: see text] on [Formula: see text] and [Formula: see text] on [Formula: see text] for [Formula: see text] and [Formula: see text] with [Formula: see text], is equal to [Formula: see text]. As a corollary, we find that the [Formula: see text]-number of the complete bipartite graph [Formula: see text] on [Formula: see text] is also equal to [Formula: see text].
分享
查看原文
单纯复合体的nf数
设[公式:见文]为[公式:见文]的简单复合体。[公式:见文]的[公式:见文]复合体是[公式:见文]上的简单复合体[公式:见文],其中[公式:见文]的面理想等于[公式:见文]的Stanley-Reisner理想。进一步,对于每一个[公式:见文],我们引入[公式:见文]th[公式:见文]-complex[公式:见文],通过设置[公式:见文]归纳定义为[公式:见文]。可以设置[公式:见正文]。[公式:见文]-[公式:见文]的数是[公式:见文]的最小整数[公式:见文]。在本文中,我们特别感兴趣的是一个有限图的[公式:见文本]-数,它可以回归为一个维数为1的简单复形。结果表明,对于[公式:见文]和[公式:见文],[公式:见文]和[公式:见文]的完全图[公式:见文]与[公式:见文]的完全图[公式:见文]和[公式:见文]的完全图[公式:见文]的不相交数[公式:见文]等于[公式:见文]。作为推论,我们发现[公式:见文]上的[公式:见文]-完全二部图[公式:见文]的数也等于[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信