{"title":"Variation in Growth Response of Coastal Dune-Building Grass Species Ammophila Arenaria and Leymus Arenarius to Sand Burial","authors":"G. Ievinsh, Una Andersone-Ozola","doi":"10.2478/botlit-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract Ammophila arenaria and Leymus arenarius are dune-building grass species native to European seacoasts. The present study aimed to compare growth responses to the sand burial of A. arenaria and L. arenarius from coastal habitats of the Baltic Sea, when the intensity of sand accretion was relatively low under controlled conditions. Plants were grown from seeds collected from natural coastal habitats, transplanted into individual containers, buried in the sand at different depths in the rapid shoot elongation stage, and further cultivated (11 or 9 weeks) in an automated greenhouse. Burial in sand significantly stimulated the growth of shoots of A. arenaria, the effect was earlier at high burial intensities (46 and 60%) and was evident ten days after the start of treatment. Both shoot and root dry mass increased for plants buried at 13%; however, increased burial depth (37, 46 and 60%) resulted in a significant increase in root biomass. In comparison, shoot biomass decreased significantly at the highest burial intensity (60%). For L. arenarius, there was no direct dependence of shoot elongation rate on burial depth. There was a tendency for increased elongation growth and biomass allocation to leaf sheaths despite a decrease in total shoot mass. Most strikingly, root biomass decreased with sand burial in parallel with increased burial depth up to 21% intensity. In conclusion, although both grass species showed a positive shoot growth response to moderate sand burial intensity, differences in individual responses at the morphological and physiological level indicate the existence of different genetically based adaptation strategies.","PeriodicalId":55127,"journal":{"name":"GAYANA BOTANICA","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAYANA BOTANICA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2478/botlit-2020-0013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Ammophila arenaria and Leymus arenarius are dune-building grass species native to European seacoasts. The present study aimed to compare growth responses to the sand burial of A. arenaria and L. arenarius from coastal habitats of the Baltic Sea, when the intensity of sand accretion was relatively low under controlled conditions. Plants were grown from seeds collected from natural coastal habitats, transplanted into individual containers, buried in the sand at different depths in the rapid shoot elongation stage, and further cultivated (11 or 9 weeks) in an automated greenhouse. Burial in sand significantly stimulated the growth of shoots of A. arenaria, the effect was earlier at high burial intensities (46 and 60%) and was evident ten days after the start of treatment. Both shoot and root dry mass increased for plants buried at 13%; however, increased burial depth (37, 46 and 60%) resulted in a significant increase in root biomass. In comparison, shoot biomass decreased significantly at the highest burial intensity (60%). For L. arenarius, there was no direct dependence of shoot elongation rate on burial depth. There was a tendency for increased elongation growth and biomass allocation to leaf sheaths despite a decrease in total shoot mass. Most strikingly, root biomass decreased with sand burial in parallel with increased burial depth up to 21% intensity. In conclusion, although both grass species showed a positive shoot growth response to moderate sand burial intensity, differences in individual responses at the morphological and physiological level indicate the existence of different genetically based adaptation strategies.
GAYANA BOTANICAAgricultural and Biological Sciences-Plant Science
CiteScore
0.70
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍:
The journal welcomes works carried out by scientists of all nationalities, and may be written in either English or Spanish. The journal receives works in systematic, taxonomy, floristic, ecology, physiology, morphology, development, conservation, cytology and phytochemical botany.