Cross-Domain Helpfulness Prediction of Online Consumer Reviews by Deep Learning Model

Shih-Hung Wu, Yi-Kun Chen
{"title":"Cross-Domain Helpfulness Prediction of Online Consumer Reviews by Deep Learning Model","authors":"Shih-Hung Wu, Yi-Kun Chen","doi":"10.1109/IRI49571.2020.00069","DOIUrl":null,"url":null,"abstract":"Customer reviews provide helpful information such as usage experiences or critiques; these are critical information resource for future customers. Since the amount of online review is getting bigger, people need a way to find the most helpful ones automatically. Previous studies addressed on the prediction of the percentage of the helpfulness voting results based on a regression model or classified them into a helpful or unhelpful classes. However, the voting result of an online review is not a constant over time, and we also find that there are many reviews getting zero vote. Therefore, we collect the voting results of the same online customer reviews over time, and observe the change of votes to find a better learning target. We collected a dataset with online reviews in five different product categories (“Apple”, “Video Game”, “Clothing, Shoes & Jewelry”, “Sports & Outdoors”, and “Prime Video”) from Amazon.com with the voting result on the helpfulness of the reviews, and monitor the helpfulness voting for six weeks. Experiments are conducted on the dataset to get a reasonable classification on the zero and non-zero vote reviews. We construct a classification system that can classify the online reviews via the deep learning model BERT. The results show that the classifier can get good result on the helpfulness prediction. We also test the classifier on cross-domain prediction and get promising results.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"43 1","pages":"412-418"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Customer reviews provide helpful information such as usage experiences or critiques; these are critical information resource for future customers. Since the amount of online review is getting bigger, people need a way to find the most helpful ones automatically. Previous studies addressed on the prediction of the percentage of the helpfulness voting results based on a regression model or classified them into a helpful or unhelpful classes. However, the voting result of an online review is not a constant over time, and we also find that there are many reviews getting zero vote. Therefore, we collect the voting results of the same online customer reviews over time, and observe the change of votes to find a better learning target. We collected a dataset with online reviews in five different product categories (“Apple”, “Video Game”, “Clothing, Shoes & Jewelry”, “Sports & Outdoors”, and “Prime Video”) from Amazon.com with the voting result on the helpfulness of the reviews, and monitor the helpfulness voting for six weeks. Experiments are conducted on the dataset to get a reasonable classification on the zero and non-zero vote reviews. We construct a classification system that can classify the online reviews via the deep learning model BERT. The results show that the classifier can get good result on the helpfulness prediction. We also test the classifier on cross-domain prediction and get promising results.
基于深度学习模型的在线消费者评论的跨领域有用性预测
客户评论提供有用的信息,如使用体验或评论;这些都是未来客户的关键信息资源。由于在线评论的数量越来越大,人们需要一种方法来自动找到最有帮助的评论。以往的研究都是基于回归模型对有益投票结果的百分比进行预测,或者将其分为有益和无益两类。然而,在线评论的投票结果并不是随时间而恒定的,我们也发现有很多评论是零票。因此,我们收集同一在线客户评论在一段时间内的投票结果,并观察投票的变化,以找到更好的学习目标。我们从亚马逊网站上收集了五个不同产品类别(“苹果”、“视频游戏”、“服装、鞋子和珠宝”、“运动和户外”和“Prime视频”)的在线评论数据集,并对评论的有用性进行了投票,并对有用性投票进行了为期六周的监控。在数据集上进行实验,对零票评论和非零票评论进行合理分类。我们通过深度学习模型BERT构建了一个可以对在线评论进行分类的分类系统。结果表明,该分类器在有用性预测上取得了较好的效果。我们还对分类器进行了跨域预测测试,得到了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信