{"title":"Rings of Fractions and Localization","authors":"Yasushige Watase","doi":"10.2478/forma-2020-0006","DOIUrl":null,"url":null,"abstract":"Summary This article formalized rings of fractions in the Mizar system [3], [4]. A construction of the ring of fractions from an integral domain, namely a quotient field was formalized in [7]. This article generalizes a construction of fractions to a ring which is commutative and has zero divisor by means of a multiplicatively closed set, say S, by known manner. Constructed ring of fraction is denoted by S~R instead of S−1R appeared in [1], [6]. As an important example we formalize a ring of fractions by a particular multiplicatively closed set, namely R \\ p, where p is a prime ideal of R. The resulted local ring is denoted by Rp. In our Mizar article it is coded by R~p as a synonym. This article contains also the formal proof of a universal property of a ring of fractions, the total-quotient ring, a proof of the equivalence between the total-quotient ring and the quotient field of an integral domain.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Summary This article formalized rings of fractions in the Mizar system [3], [4]. A construction of the ring of fractions from an integral domain, namely a quotient field was formalized in [7]. This article generalizes a construction of fractions to a ring which is commutative and has zero divisor by means of a multiplicatively closed set, say S, by known manner. Constructed ring of fraction is denoted by S~R instead of S−1R appeared in [1], [6]. As an important example we formalize a ring of fractions by a particular multiplicatively closed set, namely R \ p, where p is a prime ideal of R. The resulted local ring is denoted by Rp. In our Mizar article it is coded by R~p as a synonym. This article contains also the formal proof of a universal property of a ring of fractions, the total-quotient ring, a proof of the equivalence between the total-quotient ring and the quotient field of an integral domain.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.