Variation of canonical height for\break Fatou points on ℙ1

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Laura Demarco, Niki Myrto Mavraki
{"title":"Variation of canonical height for\\break Fatou points on ℙ1","authors":"Laura Demarco, Niki Myrto Mavraki","doi":"10.1515/crelle-2022-0078","DOIUrl":null,"url":null,"abstract":"Abstract Let f : ℙ 1 → ℙ 1 {f:\\mathbb{P}^{1}\\to\\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ⁢ ( k ) {a\\in\\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\\in X(\\overline{\\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\\mapsto\\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\\overline{\\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\\mapsto\\hat{\\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\\in\\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\\in\\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\\tilde{f}:X\\times\\mathbb{P}^{1}\\dashrightarrow X\\times\\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ⁢ ( a ) {\\hat{\\lambda}_{f,\\gamma}(a)} can be computed as an intersection number.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.
1上断点的正则化高度的变化
设f: 1→1 {f:\mathbb{P} ^{1}\to\mathbb{P} ^{1}}是定义在函数域k= k≠(X) k= k (X)上的度{>1 >1}的映射,其中k是一个数域,X是k上的一个投影曲线。对于{满足动态稳定性条件的每个点a∈<}s:3> {1¹(k) a \in\mathbb{P} ^1(k),我们证明了在点at {a_t}处,}对于t∈X≠(π¯){t {}}{{}}{\in X(\overline{\mathbb{Q}})在}有限集外,推导出曲线X上的韦尔高度;即,我们证明了在 {\mathbb{Q}} -因子D= df,a {D=D_f{,a,使得函数t∈h ^ f t¹(a t)-h D¹(t) t }}{\mapsto\hat{h} _f_t{(a_t{)}}- h_d{ (t)}对于任何与D相关的Weil高度的选择{都在}X²(π¯)X(}{\overline{\mathbb{Q}})上有界。我们还证明了一个局部版本,即局部正则高度t∈λ ^ f t,v≠(a t) t }{\mapsto\hat{\lambda} _f_t{,{v}(a_t)}与D的Weil函数不同,在{数域k的每个位置}v上,X≠(v) X(}{\mathbb{C} _v{)上有一个连续函数},这些结果对于多项式映射f和所有点a∈1≠(k) a }{\in\mathbb{P} ^{1}(k)是已知的,}没有稳定性假设,[21,14],对于映射f,它是椭圆曲线E / k的自同态商和所有点a∈1∑(k){ a \in\mathbb{P} ^{1}(k)}。[32,29]。最后,我们用诱导映射f的几何特征来描述我们的稳定性条件:X X²1讲解X X²1{\tilde{f}:X \times\mathbb{P} ^{1}\dashrightarrow X \times\mathbb{P} ^{1}} / K;并且证明了(f,a) (f,a)对(f,a)的相对n录影带模型的存在性,当a是在k点γ处的Fatou点,其中局部正则高度λ ^ f, γ¹(a) {}{\hat{\lambda} _f{, \gamma} (a)}可以计算为交点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信