{"title":"Two asset-barrier option under stochastic volatility","authors":"Barbara Goetz, M. Escobar, R. Zagst","doi":"10.1080/1350486X.2017.1419910","DOIUrl":null,"url":null,"abstract":"ABSTRACT Financial products which depend on hitting times for two underlying assets have become very popular in the last decade. Three common examples are double-digital barrier options, two-asset barrier spread options and double lookback options. Analytical expressions for the joint distribution of the endpoints and the maximum and/or minimum values of two assets are essential in order to obtain quasi-closed form solutions for the price of these derivatives. Earlier authors derived quasi-closed form pricing expressions in the context of constant volatility and correlation. More recently solutions were provided in the presence of a common stochastic volatility factor but with restricted correlations due to the use of a method of images. In this article, we generalize this finding by allowing any value for the correlation. In this context, we derive closed-form expressions for some two-asset barrier options.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"34 1","pages":"520 - 546"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2017.1419910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Financial products which depend on hitting times for two underlying assets have become very popular in the last decade. Three common examples are double-digital barrier options, two-asset barrier spread options and double lookback options. Analytical expressions for the joint distribution of the endpoints and the maximum and/or minimum values of two assets are essential in order to obtain quasi-closed form solutions for the price of these derivatives. Earlier authors derived quasi-closed form pricing expressions in the context of constant volatility and correlation. More recently solutions were provided in the presence of a common stochastic volatility factor but with restricted correlations due to the use of a method of images. In this article, we generalize this finding by allowing any value for the correlation. In this context, we derive closed-form expressions for some two-asset barrier options.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.