Asymptotic analysis for 1D compressible Navier-Stokes-Vlasov equations

IF 1 3区 数学 Q1 MATHEMATICS
Xinran Shi, Yunfei Su, Lei Yao
{"title":"Asymptotic analysis for 1D compressible Navier-Stokes-Vlasov equations","authors":"Xinran Shi, Yunfei Su, Lei Yao","doi":"10.3934/cpaa.2020119","DOIUrl":null,"url":null,"abstract":"We consider the initial-boundary value problem of compressible Navier–Stokes–Vlasov equations under a local alignment regime in a one-dimensional bounded domain. Based on the relative entropy method and compactness argument, we prove that a weak solution of the initial-boundary value problem converges to a strong solution of the limiting two-phase fluid system. This work extends in some sense the previous work of Choi and Jung [Math. Models Methods Appl. Sci. 31(11), 2213–2295 (2021)], which considered the diffusive term ∂ ξξ f ɛ in the kinetic equation. Note that the diffusion term was not considered in this paper.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2020119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the initial-boundary value problem of compressible Navier–Stokes–Vlasov equations under a local alignment regime in a one-dimensional bounded domain. Based on the relative entropy method and compactness argument, we prove that a weak solution of the initial-boundary value problem converges to a strong solution of the limiting two-phase fluid system. This work extends in some sense the previous work of Choi and Jung [Math. Models Methods Appl. Sci. 31(11), 2213–2295 (2021)], which considered the diffusive term ∂ ξξ f ɛ in the kinetic equation. Note that the diffusion term was not considered in this paper.
一维可压缩Navier-Stokes-Vlasov方程的渐近分析
研究一维有界区域上局部对准区域下可压缩Navier-Stokes-Vlasov方程的初边值问题。基于相对熵法和紧性论证,证明了初始边值问题的弱解收敛于极限两相流体系统的强解。这项工作在某种意义上扩展了Choi和Jung之前的工作。模型、方法、应用。科学通报,31(11),2213-2295(2021)],考虑了动力学方程中的扩散项∂ξξ f /。请注意,本文没有考虑扩散项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信