Human Pose Estimation in 3D using heatmaps

Sachin Parajuli, Manoj Kumar Guragai
{"title":"Human Pose Estimation in 3D using heatmaps","authors":"Sachin Parajuli, Manoj Kumar Guragai","doi":"10.1109/AISP53593.2022.9760634","DOIUrl":null,"url":null,"abstract":"3D human pose estimation involves estimating human joint locations in 3D directly from 2D camera images. The estimation model would have to estimate the depth information directly from the 2D images. We explore two methods in this paper both of which represent human pose as a heatmap. The first one follows (Newell et al. [6]) and (Martinez et al. [7]) where we predict 2D poses and then lift these 2D poses to 3D. The second approach is inspired by (Pavlakos et al. [8]) and involves learning 3D pose directly from the 2D images. We observe that while both these approaches work well, the mean of both their predictions gives us the best mean per-joint prediction error (MPJPE) score.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"36 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D human pose estimation involves estimating human joint locations in 3D directly from 2D camera images. The estimation model would have to estimate the depth information directly from the 2D images. We explore two methods in this paper both of which represent human pose as a heatmap. The first one follows (Newell et al. [6]) and (Martinez et al. [7]) where we predict 2D poses and then lift these 2D poses to 3D. The second approach is inspired by (Pavlakos et al. [8]) and involves learning 3D pose directly from the 2D images. We observe that while both these approaches work well, the mean of both their predictions gives us the best mean per-joint prediction error (MPJPE) score.
人体姿态估计在3D使用热图
三维人体姿态估计涉及直接从二维相机图像中估计三维人体关节位置。估计模型必须直接从二维图像中估计深度信息。我们在本文中探索了两种方法,这两种方法都将人体姿势表示为热图。第一个是(Newell等人[6])和(Martinez等人[7]),我们预测2D姿势,然后将这些2D姿势提升到3D。第二种方法受到(Pavlakos等人[8])的启发,涉及直接从2D图像中学习3D姿势。我们观察到,虽然这两种方法都工作得很好,但它们的预测的平均值给了我们最好的平均每关节预测误差(MPJPE)分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信