Evolution of skewness and kurtosis of cosmic density fields

J. Einasto, A. Klypin, G. Hütsi, L. Liivamägi, M. Einasto
{"title":"Evolution of skewness and kurtosis of cosmic density fields","authors":"J. Einasto, A. Klypin, G. Hütsi, L. Liivamägi, M. Einasto","doi":"10.1051/0004-6361/202039999","DOIUrl":null,"url":null,"abstract":"We perform numerical simulations of the evolution of the cosmic web for the conventional $\\Lambda$CDM model in box sizes $L_0=256,~512,~1024$~\\Mpc. We calculate models, corresponding to the present epoch $z=0$, and to redshifts $z=1,~3,~5,~10,~30$. We calculate density fields with various smoothing levels to find the dependence of the density field on smoothing. We calculate PDF and its moments -- variance, skewness and kurtosis. The dimensionless skewness $S$ and the dimensionless kurtosis $K$ characterise symmetry and flatness properties of the 1-point PDF of the cosmic web. Relations $S =S_3 \\sigma$, and $K=S_4 \\sigma^2$ are now tested in standard deviation $\\sigma$ range, $0.015 \\le \\sigma \\le 10$, and in redshift $z$ range $0 \\le z \\le 30$. Reduced skewness $S_3$ and reduced kurtosis $S_4$ described in log-log format. Data show that these relations can be extrapolated to earlier redshifts $z$, and to smaller $\\sigma$, as. well as to smaller and larger smoothing lengths $R$. Reduced parameters depend on basic parameters of models. The reduced skewness: $S_3 = f_3(R) +g_3(z)\\,\\sigma^2$, and the reduced kurtosis: $S_4 = f_4(R) +g_4(z)\\,\\sigma^2$, where $f_3(R)$ and $f_4(R)$ are parameters, depending on the smoothing length, $R$, and $g_3(z)$ and $g_4(z)$ are parameters, depending on the evolutionary epoch $z$. The lower bound of the amplitude parameters are, $f_3(R) \\approx 3.5$ for reduced skewness, and $f_4(R) \\approx 16$ for reduced kurtosis, for large smoothing lengths, $R\\approx 32$~\\Mpc. With decreasing smoothing length $R$ the skewness and kurtosis values for given redshift $z$ turn upwards.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202039999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We perform numerical simulations of the evolution of the cosmic web for the conventional $\Lambda$CDM model in box sizes $L_0=256,~512,~1024$~\Mpc. We calculate models, corresponding to the present epoch $z=0$, and to redshifts $z=1,~3,~5,~10,~30$. We calculate density fields with various smoothing levels to find the dependence of the density field on smoothing. We calculate PDF and its moments -- variance, skewness and kurtosis. The dimensionless skewness $S$ and the dimensionless kurtosis $K$ characterise symmetry and flatness properties of the 1-point PDF of the cosmic web. Relations $S =S_3 \sigma$, and $K=S_4 \sigma^2$ are now tested in standard deviation $\sigma$ range, $0.015 \le \sigma \le 10$, and in redshift $z$ range $0 \le z \le 30$. Reduced skewness $S_3$ and reduced kurtosis $S_4$ described in log-log format. Data show that these relations can be extrapolated to earlier redshifts $z$, and to smaller $\sigma$, as. well as to smaller and larger smoothing lengths $R$. Reduced parameters depend on basic parameters of models. The reduced skewness: $S_3 = f_3(R) +g_3(z)\,\sigma^2$, and the reduced kurtosis: $S_4 = f_4(R) +g_4(z)\,\sigma^2$, where $f_3(R)$ and $f_4(R)$ are parameters, depending on the smoothing length, $R$, and $g_3(z)$ and $g_4(z)$ are parameters, depending on the evolutionary epoch $z$. The lower bound of the amplitude parameters are, $f_3(R) \approx 3.5$ for reduced skewness, and $f_4(R) \approx 16$ for reduced kurtosis, for large smoothing lengths, $R\approx 32$~\Mpc. With decreasing smoothing length $R$ the skewness and kurtosis values for given redshift $z$ turn upwards.
宇宙密度场的偏度和峰度演化
我们对传统的$\Lambda$ CDM模型在盒子尺寸$L_0=256,~512,~1024$\Mpc中进行了宇宙网演化的数值模拟。我们计算模型,对应于现在的时代$z=0$和红移$z=1,~3,~5,~10,~30$。我们计算了不同平滑程度的密度场,以找出密度场对平滑的依赖关系。我们计算PDF和它的矩——方差、偏度和峰度。无量纲偏度$S$和无量纲峰度$K$表征了宇宙网1点PDF的对称性和平整性。关系$S =S_3 \sigma$和$K=S_4 \sigma^2$现在在标准偏差$\sigma$范围、$0.015 \le \sigma \le 10$范围和红移$z$范围$0 \le z \le 30$中进行测试。降低偏度$S_3$和降低峰度$S_4$以对数-对数格式描述。数据显示,这些关系可以外推到更早的红移$z$和更小的$\sigma$,如。以及更小和更大的平滑长度$R$。约简参数依赖于模型的基本参数。偏度的简化:$S_3 = f_3(R) +g_3(z)\,\sigma^2$,峰度的简化:$S_4 = f_4(R) +g_4(z)\,\sigma^2$,其中$f_3(R)$和$f_4(R)$是参数,取决于平滑长度,$R$, $g_3(z)$和$g_4(z)$是参数,取决于进化时代$z$。振幅参数的下界为:$f_3(R) \approx 3.5$表示减少偏度,$f_4(R) \approx 16$表示减少峰度,对于较大的平滑长度,$R\approx 32$\Mpc。随着平滑长度$R$的减小,给定红移的偏度和峰度值$z$呈上升趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信