P. Angeletti, G. Pelosi, S. Selleri, Ruggero Taddei, G. Toso
{"title":"Unequal Polyomino Layers for Reduced SLL Arrays with Scanning Ability","authors":"P. Angeletti, G. Pelosi, S. Selleri, Ruggero Taddei, G. Toso","doi":"10.2528/PIER18021503","DOIUrl":null,"url":null,"abstract":"Polyomino-based arrays allow to efficiently exploit the available array area with a regular element lattice, yet exhibit a nonuniform distribution of their phase centers, leading to superior electronic scanning capabilities. Yet polyomino arrays are usually implemented via polyomino of equal order, leading to uniform amplitude distribution and poor side lobe levels. In this contribution, a tiling of polyominoes of different orders is proposed to attain at the same time good scanning characteristics and side lobe level.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"21 1","pages":"31-38"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER18021503","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 6
Abstract
Polyomino-based arrays allow to efficiently exploit the available array area with a regular element lattice, yet exhibit a nonuniform distribution of their phase centers, leading to superior electronic scanning capabilities. Yet polyomino arrays are usually implemented via polyomino of equal order, leading to uniform amplitude distribution and poor side lobe levels. In this contribution, a tiling of polyominoes of different orders is proposed to attain at the same time good scanning characteristics and side lobe level.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.