Stall Flutter Measurements on a Rectangular Wing

D. Gkiolas, F. Mouzakis, D. Mathioulakis
{"title":"Stall Flutter Measurements on a Rectangular Wing","authors":"D. Gkiolas, F. Mouzakis, D. Mathioulakis","doi":"10.1115/FEDSM2018-83162","DOIUrl":null,"url":null,"abstract":"The continuous development of wind turbine technology gradually leads to larger, more flexible blades with increasing aspect ratios and high tip speeds, while in everyday operation or extreme cases the blades experience stalled flow conditions. These aforementioned facts create the need for further study and physical understanding of stall induced vibrations – stall flutter. In this context an aeroelastic setup was constructed at the NTUA subsonic wind tunnel with a rigid rectangular wing (500 mm × 1400 mm) of a NACA 64-418 airfoil supported by a spring system that enables pitching and plunging motions. The elastic axis of the wing is located 35% of the chord far from the leading edge while its center of mass at 46%. Increasing the free stream velocity (up to Re = 670 000) under various initial static angles of attack, the wing was set at fluid induced oscillations (pitching and plunging). The response of the wing under these conditions was recorded employing two accelerometers and two wire sensors for both the rotational and linear wing displacements. At the same time, in the middle of the wing span thirty (30) fast responsive pressure transducers measured the pressure distribution along the chord, while strain gauges attached to the wing rotating shaft measured the applied unsteady aerodynamic loading. Based on the above simultaneously measured quantities various aspects of the aeroelastic instability of the examined wing were revealed.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The continuous development of wind turbine technology gradually leads to larger, more flexible blades with increasing aspect ratios and high tip speeds, while in everyday operation or extreme cases the blades experience stalled flow conditions. These aforementioned facts create the need for further study and physical understanding of stall induced vibrations – stall flutter. In this context an aeroelastic setup was constructed at the NTUA subsonic wind tunnel with a rigid rectangular wing (500 mm × 1400 mm) of a NACA 64-418 airfoil supported by a spring system that enables pitching and plunging motions. The elastic axis of the wing is located 35% of the chord far from the leading edge while its center of mass at 46%. Increasing the free stream velocity (up to Re = 670 000) under various initial static angles of attack, the wing was set at fluid induced oscillations (pitching and plunging). The response of the wing under these conditions was recorded employing two accelerometers and two wire sensors for both the rotational and linear wing displacements. At the same time, in the middle of the wing span thirty (30) fast responsive pressure transducers measured the pressure distribution along the chord, while strain gauges attached to the wing rotating shaft measured the applied unsteady aerodynamic loading. Based on the above simultaneously measured quantities various aspects of the aeroelastic instability of the examined wing were revealed.
矩形机翼的失速颤振测量
随着风力机技术的不断发展,叶片逐渐变得更大、更灵活,展弦比越来越大,叶尖速度也越来越高,但在日常运行或极端情况下,叶片会出现停滞状态。上述事实表明,需要对失速引起的振动-失速颤振进行进一步的研究和物理理解。在这种情况下,在NTUA亚音速风洞中建立了一个气动弹性装置,该装置采用刚性矩形机翼(500 mm × 1400 mm)的NACA 64-418翼型,由弹簧系统支撑,可以实现俯仰和俯冲运动。机翼弹性轴距弦前缘35%,质心距弦前缘46%。在不同初始静态迎角下,增加自由流速度(Re = 67万),将机翼设置为流体诱导振荡(俯仰和俯冲)。使用两个加速度计和两个线传感器记录了机翼在这些条件下的响应,用于旋转和线性机翼位移。同时,在翼跨中间的30个快速响应压力传感器测量了沿弦的压力分布,而连接在机翼旋转轴上的应变片测量了所施加的非定常气动载荷。基于上述同时测量的量,揭示了被测机翼气动弹性失稳的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信