{"title":"The stress-driven redistribution of point defects in the vicinity of crack-like singularities","authors":"H. Rauh, R. Bullough","doi":"10.1098/rspa.1990.0001","DOIUrl":null,"url":null,"abstract":"The most important term in the energy of the elastic interaction between a crack and a point defect is presented and used to estimate the kinetics of redistribution of point defects in the stress field of an isolated crack under mode II load and a slip band impinging against a grain boundary sink. Our analyses show that the point defects should migrate only to the tip of the crack, whereas they should enter both into the slip band tip and along the adjacent boundary interface. Explicit results are obtained for the concentrations, the number and flux distributions as well as the total numbers segregated in the transient depletion and the steady-state irradiation situation and serve to reinforce previous conclusions regarding the importance of such stress-driven processes in the fracture of materials.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"44 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The most important term in the energy of the elastic interaction between a crack and a point defect is presented and used to estimate the kinetics of redistribution of point defects in the stress field of an isolated crack under mode II load and a slip band impinging against a grain boundary sink. Our analyses show that the point defects should migrate only to the tip of the crack, whereas they should enter both into the slip band tip and along the adjacent boundary interface. Explicit results are obtained for the concentrations, the number and flux distributions as well as the total numbers segregated in the transient depletion and the steady-state irradiation situation and serve to reinforce previous conclusions regarding the importance of such stress-driven processes in the fracture of materials.