Exploring the Properties of Points Generation Network

Di Chen, Yi Wu
{"title":"Exploring the Properties of Points Generation Network","authors":"Di Chen, Yi Wu","doi":"10.1109/ICIVC50857.2020.9177470","DOIUrl":null,"url":null,"abstract":"With the development of deep learning, learning-based 3D reconstruction has attracted a substantial amount of attention and various single-image 3D reconstruction networks have been proposed. However, due to self-occlusion, the information captured in a single image is highly limited, resulting in inaccuracy and instability in reconstruction results. In this paper, a feature combination module is proposed to enable existing single-image 3D reconstruction networks to perform 3D reconstruction from multiview images. In addition, we study the impact of the number of the input multiview images as well as the network output points on reconstruction quality, in order to determine the required number of the input multiview images and the output points for reasonable reconstruction. In experiment, point cloud generations with different number of input images and output points are conducted. Experimental results show that the Chamfer distance decreases by 20%∼30% with the optimal number of input multiview images of five and at least 1000 output points.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"39 6 1","pages":"272-277"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of deep learning, learning-based 3D reconstruction has attracted a substantial amount of attention and various single-image 3D reconstruction networks have been proposed. However, due to self-occlusion, the information captured in a single image is highly limited, resulting in inaccuracy and instability in reconstruction results. In this paper, a feature combination module is proposed to enable existing single-image 3D reconstruction networks to perform 3D reconstruction from multiview images. In addition, we study the impact of the number of the input multiview images as well as the network output points on reconstruction quality, in order to determine the required number of the input multiview images and the output points for reasonable reconstruction. In experiment, point cloud generations with different number of input images and output points are conducted. Experimental results show that the Chamfer distance decreases by 20%∼30% with the optimal number of input multiview images of five and at least 1000 output points.
点生成网络的性质探讨
随着深度学习的发展,基于学习的三维重建备受关注,各种单图像三维重建网络被提出。然而,由于自遮挡,单幅图像中捕获的信息非常有限,导致重建结果不准确和不稳定。本文提出了一种特征组合模块,使现有的单图像三维重建网络能够从多视图图像进行三维重建。此外,我们还研究了输入多视图图像的数量和网络输出点对重建质量的影响,以确定合理重建所需的输入多视图图像数量和输出点。在实验中,采用不同数量的输入图像和输出点进行点云生成。实验结果表明,当输入多视图图像的最佳数量为5个且输出点至少为1000个时,倒角距离减少了20% ~ 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信