{"title":"Information and decision-making in dynamic cell signaling","authors":"D. Rand","doi":"10.1109/BIBM.2016.7822476","DOIUrl":null,"url":null,"abstract":"I will discuss a new theoretical approach to information and decisions in signalling systems and relate this to new experimental results about the NF-kappaB signalling system. NF-kappaB is an exemplar system that controls inflammation and in different contexts has varying effects on cell death and cell division. It is activated by various stress stimuli, including inflammatory cytokines such as TNFalpha and IL-1beta and is regarded as one of the most important stress response pathways in the mammalian cell. In a variety of conditions it displays oscillatory dynamics when stimulated, with the transcription factor entering the nucleus in a pulsatile fashion with a period of roughly 100 minutes. It is commonly claimed that it is information processing hub, taking in signals about the infection and stress status of the tissue environment and as a consequence of the oscillations, transmitting higher amounts of information to the hundreds of genes it controls. My aim is to develop a conceptual and mathematical framework to enable a rigorous quantifiable discussion of information in this context in order to follow Francis Crick's counsel that it is better in biology to follow the flow of information than those of matter or energy. In my approach the value of the information in the signalling system is defined by how well it can be used to make the “correct decisions” when those “decisions” are made by molecular networks. As part of this I will introduce a new mathematical method for the analysis and simulation of large stochastic non-linear oscillating systems. This allows an analytic analysis of the stochastic relationship between input and response and shows that for tightly-coupled systems like those based on current models for signalling systems, clocks, and the cell cycle this relationship is highly constrained and non-generic.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"86 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
I will discuss a new theoretical approach to information and decisions in signalling systems and relate this to new experimental results about the NF-kappaB signalling system. NF-kappaB is an exemplar system that controls inflammation and in different contexts has varying effects on cell death and cell division. It is activated by various stress stimuli, including inflammatory cytokines such as TNFalpha and IL-1beta and is regarded as one of the most important stress response pathways in the mammalian cell. In a variety of conditions it displays oscillatory dynamics when stimulated, with the transcription factor entering the nucleus in a pulsatile fashion with a period of roughly 100 minutes. It is commonly claimed that it is information processing hub, taking in signals about the infection and stress status of the tissue environment and as a consequence of the oscillations, transmitting higher amounts of information to the hundreds of genes it controls. My aim is to develop a conceptual and mathematical framework to enable a rigorous quantifiable discussion of information in this context in order to follow Francis Crick's counsel that it is better in biology to follow the flow of information than those of matter or energy. In my approach the value of the information in the signalling system is defined by how well it can be used to make the “correct decisions” when those “decisions” are made by molecular networks. As part of this I will introduce a new mathematical method for the analysis and simulation of large stochastic non-linear oscillating systems. This allows an analytic analysis of the stochastic relationship between input and response and shows that for tightly-coupled systems like those based on current models for signalling systems, clocks, and the cell cycle this relationship is highly constrained and non-generic.