Topological calculation of local cohomological dimension

IF 0.4 Q4 MATHEMATICS
Thomas Reichelt, M. Saito, U. Walther
{"title":"Topological calculation of local cohomological dimension","authors":"Thomas Reichelt, M. Saito, U. Walther","doi":"10.5427/jsing.2023.26b","DOIUrl":null,"url":null,"abstract":"We show that the sum of the local cohomological dimension and the rectified $\\mathbb Q$-homological depth of a closed analytic subspace of a complex manifold coincide with the dimension of the ambient manifold. The local cohomological dimension is then calculated using the cohomology of the links of the analytic space. In the algebraic case the first assertion is equivalent to the coincidence of the rectified $\\mathbb Q$-homological depth with the de Rham depth studied by Ogus, and follows essentially from his work. As a corollary we show that the local cohomological dimension of a quasi-projective variety is determined by that of its general hyperplane section together with the link cohomology at 0-dimensional strata of a complex analytic Whitney stratification.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":"28 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2023.26b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that the sum of the local cohomological dimension and the rectified $\mathbb Q$-homological depth of a closed analytic subspace of a complex manifold coincide with the dimension of the ambient manifold. The local cohomological dimension is then calculated using the cohomology of the links of the analytic space. In the algebraic case the first assertion is equivalent to the coincidence of the rectified $\mathbb Q$-homological depth with the de Rham depth studied by Ogus, and follows essentially from his work. As a corollary we show that the local cohomological dimension of a quasi-projective variety is determined by that of its general hyperplane section together with the link cohomology at 0-dimensional strata of a complex analytic Whitney stratification.
局部上同维的拓扑计算
证明了复流形的闭解析子空间的局部上同调维数与整流$\mathbb Q$-同调深度的和与环境流形的维数重合。然后利用解析空间的连杆的上同调计算局部上同调维数。在代数情况下,第一个断言等价于修正后的$\mathbb Q$-同调深度与Ogus研究的de Rham深度的重合,并且本质上是从他的工作中得出的。作为一个推论,我们证明了拟射影变的局部上同调维数是由它的一般超平面剖面的局部上同调维数和复解析惠特尼分层的0维地层上的连杆上同调维数决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信