Two Artificial Neural Networks for Modeling Discrete Survival Time of Censored Data

Taysseer Sharaf, C. Tsokos
{"title":"Two Artificial Neural Networks for Modeling Discrete Survival Time of Censored Data","authors":"Taysseer Sharaf, C. Tsokos","doi":"10.1155/2015/270165","DOIUrl":null,"url":null,"abstract":"Artificial neural network (ANN) theory is emerging as an alternative to conventional statistical methods in modeling nonlinear functions. The popular Cox proportional hazard model falls short in modeling survival data with nonlinear behaviors. ANN is a good alternative to the Cox PH as the proportionality of the hazard assumption and model relaxations are not required. In addition, ANN possesses a powerful capability of handling complex nonlinear relations within the risk factors associated with survival time. In this study, we present a comprehensive comparison of two different approaches of utilizing ANN in modeling smooth conditional hazard probability function. We use real melanoma cancer data to illustrate the usefulness of the proposed ANN methods. We report some significant results in comparing the survival time of male and female melanoma patients.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"21 1","pages":"270165:1-270165:7"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/270165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Artificial neural network (ANN) theory is emerging as an alternative to conventional statistical methods in modeling nonlinear functions. The popular Cox proportional hazard model falls short in modeling survival data with nonlinear behaviors. ANN is a good alternative to the Cox PH as the proportionality of the hazard assumption and model relaxations are not required. In addition, ANN possesses a powerful capability of handling complex nonlinear relations within the risk factors associated with survival time. In this study, we present a comprehensive comparison of two different approaches of utilizing ANN in modeling smooth conditional hazard probability function. We use real melanoma cancer data to illustrate the usefulness of the proposed ANN methods. We report some significant results in comparing the survival time of male and female melanoma patients.
两种基于人工神经网络的截尾数据离散生存时间建模
人工神经网络(ANN)理论作为传统统计方法在非线性函数建模方面的替代方法正在兴起。流行的Cox比例风险模型在模拟具有非线性行为的生存数据方面存在不足。由于不需要风险假设和模型松弛的比例性,人工神经网络是Cox PH的一个很好的替代方法。此外,人工神经网络具有处理与生存时间相关的危险因素之间复杂非线性关系的强大能力。在本研究中,我们全面比较了两种利用人工神经网络建模光滑条件风险概率函数的不同方法。我们使用真实的黑色素瘤癌症数据来说明所提出的人工神经网络方法的有效性。我们在比较男性和女性黑色素瘤患者的生存时间方面报告了一些显著的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信