Non-autonomous weighted elliptic equations with double exponential growth

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Baraket, Rached Jaidane
{"title":"Non-autonomous weighted elliptic equations with double exponential growth","authors":"S. Baraket, Rached Jaidane","doi":"10.2478/auom-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract We consider the existence of solutions of the following weighted problem: {L:=-div(ρ(x)|∇u|N-2∇u)+ξ(x)|u|N-2u=f(x,u)inBu>0inBu=0on∂B, \\left\\{ {\\matrix{{L: = - div\\left( {\\rho \\left( x \\right){{\\left| {\\nabla u} \\right|}^{N - 2}}\\nabla u} \\right) + \\xi \\left( x \\right){{\\left| u \\right|}^{N - 2}}} \\hfill & {u = f\\left( {x,u} \\right)} \\hfill & {in} \\hfill & B \\hfill \\cr {} \\hfill & {u > 0} \\hfill & {in} \\hfill & B \\hfill \\cr {} \\hfill & {u = 0} \\hfill & {on} \\hfill & {\\partial B,} \\hfill \\cr } } \\right. where B is the unit ball of ℝN, N #62; 2, ρ(x)=(loge|x|)N-1 \\rho \\left( x \\right) = {\\left( {\\log {e \\over {\\left| x \\right|}}} \\right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"5 1","pages":"33 - 66"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract We consider the existence of solutions of the following weighted problem: {L:=-div(ρ(x)|∇u|N-2∇u)+ξ(x)|u|N-2u=f(x,u)inBu>0inBu=0on∂B, \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝN, N #62; 2, ρ(x)=(loge|x|)N-1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.
具有双指数增长的非自治加权椭圆方程
摘要考虑以下加权问题解的存在性:{L:=-div(ρ(x)|∇u|N-2∇u)+ξ(x)|u|N-2u=f(x,u)inBu>0inBu=0on∂B, \left\{\矩阵{{L:= - div \离开({\ρ\离开(x \右){{\左|{\微分算符u} \右|}^ {N - 2}} \微分算符u} \右)+ \ xi \离开(x \右){{\左| u \右|}^ {N - 2}}} \ hfill & {u = f \离开({x, u} \右)}\ hfill &的{}\ hfill & B \ hfill \ cr {} \ hfill & u > {0} \ hfill &的{}\ hfill & B \ hfill \ cr {} \ hfill & u = {0} \ hfill &上{}\ hfill & {\ B部分}\ hfill \ cr}} \。式中B为单位球,N #62;2、ρ(x)=(loge|x|)N-1 \rho \left(x \right) = {\left({\log {e \ / {\left| x \right}}} \right)^{N -1}}是Trudinger-Moser嵌入中极限指数为N−1的奇异对数权值,ξ(x)是一个正连续势。对于双指数型Trudinger-Moser不等式,非线性是临界或亚临界增长。利用山口定理证明了正解的存在性。在临界情况下,欧拉-拉格朗日函数在各个层次上都不满足Palais-Smale条件的要求。我们通过使用适应的测试函数来识别这种紧凑程度来避免这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信