Inter-loop optimization in RAJA using loop chains

Brandon Neth, T. Scogland, B. Supinski, M. Strout
{"title":"Inter-loop optimization in RAJA using loop chains","authors":"Brandon Neth, T. Scogland, B. Supinski, M. Strout","doi":"10.1145/3447818.3461665","DOIUrl":null,"url":null,"abstract":"Typical parallelization approaches such as OpenMP and CUDA provide constructs for parallelizing and blocking for data locality for individual loops. By focusing on each loop separately, these approaches fail to leverage sources of data locality possible due to inter-loop data reuse. The loop chain abstraction provides a framework for reasoning about and applying inter-loop optimizations. In this work, we incorporate the loop chain abstraction into RAJA, a performance portability layer for high-performance computing applications. Using the loop-chain-extended RAJA, or RAJALC, developers can have the RAJA library apply loop transformations like loop fusion and overlapped tiling while maintaining the original structure of their programs. By introducing targeted symbolic execution capabilities, we can collect and cache data access information required to verify loop transformations. We evaluate the performance improvement and refactoring costs of our extension. Overall, our results demonstrate 85-98\\% of the performance improvements of hand-optimized kernels with dramatically fewer code changes.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3461665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Typical parallelization approaches such as OpenMP and CUDA provide constructs for parallelizing and blocking for data locality for individual loops. By focusing on each loop separately, these approaches fail to leverage sources of data locality possible due to inter-loop data reuse. The loop chain abstraction provides a framework for reasoning about and applying inter-loop optimizations. In this work, we incorporate the loop chain abstraction into RAJA, a performance portability layer for high-performance computing applications. Using the loop-chain-extended RAJA, or RAJALC, developers can have the RAJA library apply loop transformations like loop fusion and overlapped tiling while maintaining the original structure of their programs. By introducing targeted symbolic execution capabilities, we can collect and cache data access information required to verify loop transformations. We evaluate the performance improvement and refactoring costs of our extension. Overall, our results demonstrate 85-98\% of the performance improvements of hand-optimized kernels with dramatically fewer code changes.
基于循环链的RAJA循环间优化
典型的并行化方法,如OpenMP和CUDA,为单个循环的数据局部性提供了并行化和阻塞结构。由于分别关注每个循环,这些方法无法利用由于循环间数据重用而可能产生的数据源局部性。循环链抽象为推理和应用循环间优化提供了一个框架。在这项工作中,我们将循环链抽象合并到RAJA中,RAJA是高性能计算应用程序的性能可移植性层。使用环链扩展的RAJA或rajarc,开发人员可以让RAJA库应用循环转换,如循环融合和重叠平铺,同时保持程序的原始结构。通过引入目标符号执行功能,我们可以收集和缓存验证循环转换所需的数据访问信息。我们评估了扩展的性能改进和重构成本。总的来说,我们的结果表明,手工优化内核的性能提高了85- 98%,而代码更改却少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信