Two methods for solving the problem of heat transfer in a rarefied gas

V.V. Aristov, M.S. Ivanov, F.G. Cheremisin
{"title":"Two methods for solving the problem of heat transfer in a rarefied gas","authors":"V.V. Aristov,&nbsp;M.S. Ivanov,&nbsp;F.G. Cheremisin","doi":"10.1016/0041-5553(90)90097-C","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of stationary one-dimensional heat flow between parallel flat surfaces in a rarefied gas is solved using two independent numerical methods: the finite difference method of direct solution of the Boltzmann equation and the method of direct statistical simulation. By comparing the results, the accuracy of the methods is established and the algorithms for solving the problem are verified. The features of the flow are investigated for a wide range of Knudsen numbers.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 2","pages":"Pages 193-195"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90097-C","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090097C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The problem of stationary one-dimensional heat flow between parallel flat surfaces in a rarefied gas is solved using two independent numerical methods: the finite difference method of direct solution of the Boltzmann equation and the method of direct statistical simulation. By comparing the results, the accuracy of the methods is established and the algorithms for solving the problem are verified. The features of the flow are investigated for a wide range of Knudsen numbers.

解决稀薄气体传热问题的两种方法
用直接解玻尔兹曼方程的有限差分法和直接统计模拟法两种独立的数值方法求解了稀薄气体中平行平面间的一维稳态热流问题。通过对结果的比较,建立了方法的准确性,并验证了求解该问题的算法。研究了广泛范围内克努森数的流动特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信