NADPH Oxidase-2 and Atherothrombosis: Insight From Chronic Granulomatous Disease.

F. Violi, R. Carnevale, L. Loffredo, P. Pignatelli, J. Gallin
{"title":"NADPH Oxidase-2 and Atherothrombosis: Insight From Chronic Granulomatous Disease.","authors":"F. Violi, R. Carnevale, L. Loffredo, P. Pignatelli, J. Gallin","doi":"10.1161/ATVBAHA.116.308351","DOIUrl":null,"url":null,"abstract":"The phagocytic cell enzyme NADPH oxidase-2 (Nox2) is critical for killing micro-organisms via production of reactive oxygen species and thus is a key element of the innate immune system. Nox2 is also detectable in endothelial cells and platelets where it has vasoconstrictive and aggregating properties, respectively. Patients with X-linked chronic granulomatous disease with hereditary Nox2 deficiency not only have impaired bacterial killing but, in association with loss of Nox2 function, also have enhanced carotid artery dilation, impaired platelet-related thrombosis, and reduced carotid atherosclerotic burden. Experimental studies corroborated these reports in chronic granulomatous disease by demonstrating (1) Nox2 is upregulated in atherosclerotic plaque, and this upregulation significantly correlates with oxidative stress and (2) pharmacological inhibition of Nox2 is associated with a delayed atherosclerotic progression in animal models. Furthermore, the role of Nox2 in platelet-associated thrombosis was substantiated by experiments showing impaired platelet activation in animals treated with a Nox2 inhibitor or impaired platelet aggregation along with reduced platelet-related thrombosis in the mouse knockout model of Nox2. Interestingly, in chronic granulomatous disease patients and in the mouse knockout model of Nox2, no defects of primary hemostasis were detected. This review analyses experimental and clinical data suggesting Nox2 is a potential target for counteracting the atherothrombotic process.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, & Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.116.308351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

The phagocytic cell enzyme NADPH oxidase-2 (Nox2) is critical for killing micro-organisms via production of reactive oxygen species and thus is a key element of the innate immune system. Nox2 is also detectable in endothelial cells and platelets where it has vasoconstrictive and aggregating properties, respectively. Patients with X-linked chronic granulomatous disease with hereditary Nox2 deficiency not only have impaired bacterial killing but, in association with loss of Nox2 function, also have enhanced carotid artery dilation, impaired platelet-related thrombosis, and reduced carotid atherosclerotic burden. Experimental studies corroborated these reports in chronic granulomatous disease by demonstrating (1) Nox2 is upregulated in atherosclerotic plaque, and this upregulation significantly correlates with oxidative stress and (2) pharmacological inhibition of Nox2 is associated with a delayed atherosclerotic progression in animal models. Furthermore, the role of Nox2 in platelet-associated thrombosis was substantiated by experiments showing impaired platelet activation in animals treated with a Nox2 inhibitor or impaired platelet aggregation along with reduced platelet-related thrombosis in the mouse knockout model of Nox2. Interestingly, in chronic granulomatous disease patients and in the mouse knockout model of Nox2, no defects of primary hemostasis were detected. This review analyses experimental and clinical data suggesting Nox2 is a potential target for counteracting the atherothrombotic process.
NADPH氧化酶-2与动脉粥样硬化血栓形成:来自慢性肉芽肿病的见解。
吞噬细胞酶NADPH氧化酶-2 (Nox2)是通过产生活性氧杀死微生物的关键,因此是先天免疫系统的关键因素。在内皮细胞和血小板中也可以检测到Nox2,它分别具有血管收缩和聚集特性。遗传Nox2缺乏症的x连锁慢性肉芽肿病患者不仅细菌杀伤功能受损,而且与Nox2功能丧失相关,颈动脉扩张增强,血小板相关血栓形成受损,颈动脉粥样硬化负担减轻。实验研究在慢性肉芽肿疾病中证实了这些报道:(1)Nox2在动脉粥样硬化斑块中上调,这种上调与氧化应激显著相关;(2)动物模型中Nox2的药理抑制与动脉粥样硬化进展延迟相关。此外,Nox2在血小板相关血栓形成中的作用得到了证实,实验显示,在小鼠Nox2敲除模型中,使用Nox2抑制剂治疗的动物血小板活化受损或血小板聚集受损,血小板相关血栓形成减少。有趣的是,在慢性肉芽肿病患者和小鼠Nox2敲除模型中,未发现原发性止血缺陷。这篇综述分析了实验和临床数据,表明Nox2是对抗动脉粥样硬化血栓形成过程的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信