{"title":"PLANT SPECIE CLASSIFICATION USING SINUOSITY COEFFICIENTS OF LEAVES","authors":"J. R. Kala, Serestina Viriri","doi":"10.5566/IAS.1821","DOIUrl":null,"url":null,"abstract":"Forests are the lungs of our planet. Conserving the plants may require the development of an automated system that will identify plants using leaf features such as shape, color, and texture. In this paper, a leaf shape descriptor based on sinuosity coefficients is proposed. The sinuosity coefficients are defined using the sinuosity measure, which is a measure expressing the degree of meandering of a curve. The initial empirical experiments performed on the LeafSnap dataset on the usage of four sinuosity coefficients to characterize the leaf images using the Radial Basis Function Neural Network (RBF) and Multilayer Perceptron (MLP) classifiers achieved accurate classification rates of 88% and 65%, respectively. The proposed feature extraction technique is further enhanced through the addition of leaf geometrical features, and the accurate classification rates of 93% and 82% were achieved using RBF and MLP, respectively. The overall results achieved showed that the proposed feature extraction technique based on the sinuosity coefficients of leaves, complemented with geometrical features improve the accuracy rate of plant classification using leaf recognition.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"41 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1821","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Forests are the lungs of our planet. Conserving the plants may require the development of an automated system that will identify plants using leaf features such as shape, color, and texture. In this paper, a leaf shape descriptor based on sinuosity coefficients is proposed. The sinuosity coefficients are defined using the sinuosity measure, which is a measure expressing the degree of meandering of a curve. The initial empirical experiments performed on the LeafSnap dataset on the usage of four sinuosity coefficients to characterize the leaf images using the Radial Basis Function Neural Network (RBF) and Multilayer Perceptron (MLP) classifiers achieved accurate classification rates of 88% and 65%, respectively. The proposed feature extraction technique is further enhanced through the addition of leaf geometrical features, and the accurate classification rates of 93% and 82% were achieved using RBF and MLP, respectively. The overall results achieved showed that the proposed feature extraction technique based on the sinuosity coefficients of leaves, complemented with geometrical features improve the accuracy rate of plant classification using leaf recognition.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.