Spherical Space Domain Adaptation With Robust Pseudo-Label Loss

Xiang Gu, Jian Sun, Zongben Xu
{"title":"Spherical Space Domain Adaptation With Robust Pseudo-Label Loss","authors":"Xiang Gu, Jian Sun, Zongben Xu","doi":"10.1109/cvpr42600.2020.00912","DOIUrl":null,"url":null,"abstract":"Adversarial domain adaptation (DA) has been an effective approach for learning domain-invariant features by adversarial training. In this paper, we propose a novel adversarial DA approach completely defined in spherical feature space, in which we define spherical classifier for label prediction and spherical domain discriminator for discriminating domain labels. To utilize pseudo-label robustly, we develop a robust pseudo-label loss in the spherical feature space, which weights the importance of estimated labels of target data by posterior probability of correct labeling, modeled by Gaussian-uniform mixture model in spherical feature space. Extensive experiments show that our method achieves state-of-the-art results, and also confirm effectiveness of spherical classifier, spherical discriminator and spherical robust pseudo-label loss.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"16 1","pages":"9098-9107"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

Adversarial domain adaptation (DA) has been an effective approach for learning domain-invariant features by adversarial training. In this paper, we propose a novel adversarial DA approach completely defined in spherical feature space, in which we define spherical classifier for label prediction and spherical domain discriminator for discriminating domain labels. To utilize pseudo-label robustly, we develop a robust pseudo-label loss in the spherical feature space, which weights the importance of estimated labels of target data by posterior probability of correct labeling, modeled by Gaussian-uniform mixture model in spherical feature space. Extensive experiments show that our method achieves state-of-the-art results, and also confirm effectiveness of spherical classifier, spherical discriminator and spherical robust pseudo-label loss.
具有鲁棒伪标签损失的球面空间域自适应
对抗域自适应(DA)是一种通过对抗训练学习域不变特征的有效方法。本文提出了一种完全定义在球形特征空间中的对抗数据处理方法,其中定义了用于标签预测的球形分类器和用于识别领域标签的球形域判别器。为了鲁棒地利用伪标签,我们开发了一种鲁棒球形特征空间中的伪标签损失算法,该算法通过正确标记的后验概率对目标数据估计标签的重要性进行加权,该方法由球形特征空间中的高斯均匀混合模型建模。大量的实验表明,我们的方法达到了最先进的结果,也证实了球形分类器、球形鉴别器和球形鲁棒伪标签损失的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信