The loop cohomology of a space with the polynomial cohomology algebra

IF 0.3 Q4 MATHEMATICS
Samson Saneblidze
{"title":"The loop cohomology of a space with the polynomial cohomology algebra","authors":"Samson Saneblidze","doi":"10.1016/j.trmi.2017.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Given a simply connected space <span><math><mi>X</mi></math></span> with polynomial cohomology <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mspace></mspace><mrow><mo>(</mo><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo></math></span> we calculate the loop cohomology algebra <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> by means of the action of the Steenrod cohomology operation <span><math><mi>S</mi><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>.</mo></math></span> This calculation uses an explicit construction of the minimal Hirsch filtered model of the cochain algebra <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>.</mo></math></span> As a consequence we obtain that <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> is the exterior algebra if and only if <span><math><mi>S</mi><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is multiplicatively decomposable on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>;</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>.</mo></math></span> The last statement in fact contains a converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 389-395"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.07.002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Given a simply connected space X with polynomial cohomology H(X;Z2), we calculate the loop cohomology algebra H(ΩX;Z2) by means of the action of the Steenrod cohomology operation Sq1 on H(X;Z2). This calculation uses an explicit construction of the minimal Hirsch filtered model of the cochain algebra C(X;Z2). As a consequence we obtain that H(ΩX;Z2) is the exterior algebra if and only if Sq1 is multiplicatively decomposable on H(X;Z2). The last statement in fact contains a converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).

空间与多项式上同调代数的环上同调
给定一个具有多项式上同调H∗(X;Z2)的单连通空间X,利用Steenrod上同调运算Sq1对H∗(X;Z2)的作用,计算出循环上同调代数H∗(ΩX;Z2)。此计算使用协链代数C * (X;Z2)的最小Hirsch过滤模型的显式构造。因此,我们得到H∗(ΩX;Z2)是外代数当且仅当Sq1在H∗(X;Z2)上是乘法可分解的。最后一个命题实际上包含了a . Borel (Switzer, 1975, theorem 15.60)的一个定理的逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信