Topological entropy of pseudo-Anosov maps on punctured surfaces vs. homology of mapping tori

Pub Date : 2022-01-04 DOI:10.3336/gm.57.2.09
Hyungryul Baik, Juhun Baik, Changsub Kim, Philippe Tranchida
{"title":"Topological entropy of pseudo-Anosov maps on punctured surfaces vs. homology of mapping tori","authors":"Hyungryul Baik, Juhun Baik, Changsub Kim, Philippe Tranchida","doi":"10.3336/gm.57.2.09","DOIUrl":null,"url":null,"abstract":"We investigate the relation between the topological entropy of pseudo-Anosov maps on surfaces with punctures and the rank of the first homology of their mapping tori. On the surface \\(S\\) of genus \\(g\\) with \\(n\\) punctures, we show that the minimal entropy of a pseudo-Anosov map is bounded from above by \\(\\dfrac{(k+1)\\log(k+3)}{|\\chi(S)|}\\) up to a constant multiple when the rank of the first homology of the mapping torus is \\(k+1\\) and \\(k, g, n\\) satisfy a certain assumption. This is a partial generalization of precedent works of Tsai and Agol-Leininger-Margalit.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the relation between the topological entropy of pseudo-Anosov maps on surfaces with punctures and the rank of the first homology of their mapping tori. On the surface \(S\) of genus \(g\) with \(n\) punctures, we show that the minimal entropy of a pseudo-Anosov map is bounded from above by \(\dfrac{(k+1)\log(k+3)}{|\chi(S)|}\) up to a constant multiple when the rank of the first homology of the mapping torus is \(k+1\) and \(k, g, n\) satisfy a certain assumption. This is a partial generalization of precedent works of Tsai and Agol-Leininger-Margalit.
分享
查看原文
刺穿表面上伪anosov映射的拓扑熵与映射环面的同调性
研究了带穿孔曲面上的伪anosov映射的拓扑熵与其映射环面第一同调秩之间的关系。在含有\(n\)戳的\(g\)属的\(S\)表面上,我们证明了当映射环面的第一个同调的秩为\(k+1\)且\(k, g, n\)满足一定的假设时,伪anosov映射的最小熵由上面的\(\dfrac{(k+1)\log(k+3)}{|\chi(S)|}\)到一个常数倍有界。这是对Tsai和Agol-Leininger-Margalit前人研究的部分概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信