Structural Kernel Learning for Large Scale Multiclass Object Co-detection

Zeeshan Hayder, Xuming He, M. Salzmann
{"title":"Structural Kernel Learning for Large Scale Multiclass Object Co-detection","authors":"Zeeshan Hayder, Xuming He, M. Salzmann","doi":"10.1109/ICCV.2015.302","DOIUrl":null,"url":null,"abstract":"Exploiting contextual relationships across images has recently proven key to improve object detection. The resulting object co-detection algorithms, however, fail to exploit the correlations between multiple classes and, for scalability reasons are limited to modeling object instance similarity with relatively low-dimensional hand-crafted features. Here, we address the problem of multiclass object co-detection for large scale datasets. To this end, we formulate co-detection as the joint multiclass labeling of object candidates obtained in a class-independent manner. To exploit the correlations between objects, we build a fully-connected CRF on the candidates, which explicitly incorporates both geometric layout relations across object classes and similarity relations across multiple images. We then introduce a structural boosting algorithm that lets us exploits rich, high-dimensional deep network features to learn object similarity within our fully-connected CRF. Our experiments on PASCAL VOC 2007 and 2012 evidences the benefits of our approach over object detection with RCNN, single-image CRF methods and state-of-the-art co-detection algorithms.","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"10 1","pages":"2632-2640"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Exploiting contextual relationships across images has recently proven key to improve object detection. The resulting object co-detection algorithms, however, fail to exploit the correlations between multiple classes and, for scalability reasons are limited to modeling object instance similarity with relatively low-dimensional hand-crafted features. Here, we address the problem of multiclass object co-detection for large scale datasets. To this end, we formulate co-detection as the joint multiclass labeling of object candidates obtained in a class-independent manner. To exploit the correlations between objects, we build a fully-connected CRF on the candidates, which explicitly incorporates both geometric layout relations across object classes and similarity relations across multiple images. We then introduce a structural boosting algorithm that lets us exploits rich, high-dimensional deep network features to learn object similarity within our fully-connected CRF. Our experiments on PASCAL VOC 2007 and 2012 evidences the benefits of our approach over object detection with RCNN, single-image CRF methods and state-of-the-art co-detection algorithms.
大规模多类目标协同检测的结构核学习
利用图像之间的上下文关系最近被证明是提高目标检测的关键。然而,由此产生的对象共同检测算法不能利用多个类之间的相关性,并且由于可伸缩性的原因,仅限于用相对低维的手工特征建模对象实例相似性。在这里,我们解决了大规模数据集的多类目标协同检测问题。为此,我们将共同检测表述为以类独立的方式获得的候选对象的联合多类标记。为了利用对象之间的相关性,我们在候选对象上构建了一个全连接的CRF,它显式地结合了对象类之间的几何布局关系和多个图像之间的相似性关系。然后,我们引入了一种结构增强算法,该算法使我们能够利用丰富的高维深度网络特征来学习完全连接的CRF中的对象相似性。我们在PASCAL VOC 2007和2012上的实验证明了我们的方法比使用RCNN、单图像CRF方法和最先进的协同检测算法的目标检测方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信