On the Ginzburg-Landau energy with a magnetic field vanishing along a curve

Asymptot. Anal. Pub Date : 2017-01-13 DOI:10.3233/ASY-171424
Ayman Kachmar, M. Nasrallah
{"title":"On the Ginzburg-Landau energy with a magnetic field vanishing along a curve","authors":"Ayman Kachmar, M. Nasrallah","doi":"10.3233/ASY-171424","DOIUrl":null,"url":null,"abstract":"The energy of a type II superconductor placed in a strong non-uniform, smooth and signed magnetic field is displayed via a universal characteristic function defined by means of a simplified two dimensional Ginzburg-Landau functional. We study the asymptotic behavior of this functional in a specific asymptotic regime, thereby linking it to a one dimensional functional, using methods developed by Almog-Helffer and Fournais-Helffer devoted to the analysis of surface superconductivity in the presence of a uniform magnetic field. As a result, we obtain an asymptotic formula reminiscent of the one for the surface superconductivity regime, where the zero set of the magnetic field plays the role of the superconductor's surface.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"84 1","pages":"135-163"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The energy of a type II superconductor placed in a strong non-uniform, smooth and signed magnetic field is displayed via a universal characteristic function defined by means of a simplified two dimensional Ginzburg-Landau functional. We study the asymptotic behavior of this functional in a specific asymptotic regime, thereby linking it to a one dimensional functional, using methods developed by Almog-Helffer and Fournais-Helffer devoted to the analysis of surface superconductivity in the presence of a uniform magnetic field. As a result, we obtain an asymptotic formula reminiscent of the one for the surface superconductivity regime, where the zero set of the magnetic field plays the role of the superconductor's surface.
磁场沿曲线消失时的金兹堡-朗道能量
用简化的二维金兹堡-朗道泛函定义的通用特征函数来表示置于强非均匀、光滑和有符号磁场中的II型超导体的能量。我们使用Almog-Helffer和Fournais-Helffer开发的方法研究了该泛函在特定渐近区域中的渐近行为,从而将其与一维泛函联系起来,这些方法专门用于分析均匀磁场存在下的表面超导性。结果,我们得到了一个近似于表面超导状态的渐近公式,其中磁场的零集扮演了超导体表面的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信