{"title":"Dietary Iron","authors":"K. Firdose, Noor Firdose","doi":"10.5772/intechopen.101265","DOIUrl":null,"url":null,"abstract":"Iron metabolism differs from the metabolism of other metals in that there is no physiologic mechanism for iron excretion, it is unusual; approximately 90% of daily iron needs are obtained from an endogenous source, the breakdown of circulating RBCs. Additionally humans derive iron from their everyday diet, predominantly from plant foods and the rest from foods of animal origin. Iron is found in food as either haem or non-haem iron. Iron bioavailability has been estimated to be in the range of 14–18% for mixed diets and 5–12% for vegetarian diets in subjects with no iron stores. Iron absorption in humans is dependent on physiological requirements, but may be restricted by the quantity and availability of iron in the diet. Bioavailability of food iron is strongly influenced by enhancers and inhibitors in the diet. Iron absorption can vary from 1 to 40%. A range of iron bioavailability factors that depend on the consumption of meat, fruit, vegetables, processed foods, iron-fortified foods, and the prevalence of obesity. The methods of food preparation and processing influence the bioavailability of iron. Cooking, fermentation, or germination can, by thermal or enzymatic action, reduce the phytic acid and the hexa- and penta-inositol phosphate content. Thus improving bioavailability of non-haem iron. This chapter will elaborate the dietary iron sources and means of enhancing bioavailability.","PeriodicalId":14524,"journal":{"name":"Iron Metabolism - Iron a Double‐Edged Sword [Working Title]","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iron Metabolism - Iron a Double‐Edged Sword [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Iron metabolism differs from the metabolism of other metals in that there is no physiologic mechanism for iron excretion, it is unusual; approximately 90% of daily iron needs are obtained from an endogenous source, the breakdown of circulating RBCs. Additionally humans derive iron from their everyday diet, predominantly from plant foods and the rest from foods of animal origin. Iron is found in food as either haem or non-haem iron. Iron bioavailability has been estimated to be in the range of 14–18% for mixed diets and 5–12% for vegetarian diets in subjects with no iron stores. Iron absorption in humans is dependent on physiological requirements, but may be restricted by the quantity and availability of iron in the diet. Bioavailability of food iron is strongly influenced by enhancers and inhibitors in the diet. Iron absorption can vary from 1 to 40%. A range of iron bioavailability factors that depend on the consumption of meat, fruit, vegetables, processed foods, iron-fortified foods, and the prevalence of obesity. The methods of food preparation and processing influence the bioavailability of iron. Cooking, fermentation, or germination can, by thermal or enzymatic action, reduce the phytic acid and the hexa- and penta-inositol phosphate content. Thus improving bioavailability of non-haem iron. This chapter will elaborate the dietary iron sources and means of enhancing bioavailability.