Measuring buffer-gas pressure in sealed glass cells

T. Driskell, M. Huang, J. Camparo
{"title":"Measuring buffer-gas pressure in sealed glass cells","authors":"T. Driskell, M. Huang, J. Camparo","doi":"10.1109/FCS.2015.7138885","DOIUrl":null,"url":null,"abstract":"In alkali rf-discharge lamps used for optical pumping in atomic clocks and magnetometers, a buffer-gas (Kr or Xe) allows electrons to extract energy from an rf-field, and these energized electrons eventually produce alkali resonant light. Contrary to naïve intuition, rf-discharge lamps can lose their noble-gas buffer over time. Recently, we began a long-term experimental program to better understand the mechanism of noble-gas loss in rf-discharge lamps, and needed a non-destructive means of measuring buffer-gas pressure in sealed glass cells. For this purpose, we employ the Kazantsev, Smirnova, and Khutorshchikov (KSK) technique, which is based on inferring buffer-gas pressure from the collision shift of an alkali ground-state hyperfine transition frequency νhfs. Here, we discuss the basic the KSK technique and two modifications that we have implemented for its improvement: use of a diode laser for optical pumping, and extrapolation of νhfs to zero magnetic field. Testing our system's long-term performance with a very low pressure reference cell (i.e., 3.3 torr Xe), we find a reproducibility of 0.2% and an absolute accuracy of 5%. Further, our systematic drift is less than one mtorr/month.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In alkali rf-discharge lamps used for optical pumping in atomic clocks and magnetometers, a buffer-gas (Kr or Xe) allows electrons to extract energy from an rf-field, and these energized electrons eventually produce alkali resonant light. Contrary to naïve intuition, rf-discharge lamps can lose their noble-gas buffer over time. Recently, we began a long-term experimental program to better understand the mechanism of noble-gas loss in rf-discharge lamps, and needed a non-destructive means of measuring buffer-gas pressure in sealed glass cells. For this purpose, we employ the Kazantsev, Smirnova, and Khutorshchikov (KSK) technique, which is based on inferring buffer-gas pressure from the collision shift of an alkali ground-state hyperfine transition frequency νhfs. Here, we discuss the basic the KSK technique and two modifications that we have implemented for its improvement: use of a diode laser for optical pumping, and extrapolation of νhfs to zero magnetic field. Testing our system's long-term performance with a very low pressure reference cell (i.e., 3.3 torr Xe), we find a reproducibility of 0.2% and an absolute accuracy of 5%. Further, our systematic drift is less than one mtorr/month.
测量密封玻璃电池中的缓冲气体压力
在用于原子钟和磁力计光泵浦的碱rf放电灯中,缓冲气体(Kr或Xe)允许电子从rf场中提取能量,这些被激发的电子最终产生碱谐振光。与naïve的直觉相反,rf放电灯会随着时间的推移失去其惰性气体缓冲。最近,我们开始了一项长期实验计划,以更好地了解射频放电灯中惰性气体损失的机制,并且需要一种非破坏性的方法来测量密封玻璃电池中的缓冲气体压力。为此,我们采用了Kazantsev, Smirnova和Khutorshchikov (KSK)技术,该技术基于从碱基态超精细跃迁频率νhfs的碰撞位移推断缓冲气体压力。在这里,我们讨论了基本的KSK技术和我们已经实现的两个改进:使用二极管激光器进行光泵浦,并将νhfs外推到零磁场。在非常低的参考压力池(即3.3 torr Xe)下测试系统的长期性能,我们发现再现性为0.2%,绝对精度为5%。此外,我们的系统漂移小于1个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信