Multiuser Detection in STBC-MIMO Systems Based on Pareto Optimality Particle Swarm Optimization Algorithm

Jianping An, Binbin Xu
{"title":"Multiuser Detection in STBC-MIMO Systems Based on Pareto Optimality Particle Swarm Optimization Algorithm","authors":"Jianping An, Binbin Xu","doi":"10.1109/ICNC.2008.727","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel particle swarm optimization (PSO) multiuser detection (MUD) approach for multiple-in-multiple-out (MIMO) systems with space-time block code (STBC). The proposed strategy consider the MUD problem with diversity reception from a multiobjective optimization (MO) viewpoint and develop a Pareto-optimal PSO-based (POPSO) algorithm. By taking advantage of the Pareto-optimal values, this approach effectively explores and exploits the channel fading information of received signals that are independent for each receive antenna, and accordingly improves the heuristic search ability to find the optimal solution. The proposed approach is shown to achieve superior bit-error-rate (BER) performance by simulations.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"37 1","pages":"237-241"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel particle swarm optimization (PSO) multiuser detection (MUD) approach for multiple-in-multiple-out (MIMO) systems with space-time block code (STBC). The proposed strategy consider the MUD problem with diversity reception from a multiobjective optimization (MO) viewpoint and develop a Pareto-optimal PSO-based (POPSO) algorithm. By taking advantage of the Pareto-optimal values, this approach effectively explores and exploits the channel fading information of received signals that are independent for each receive antenna, and accordingly improves the heuristic search ability to find the optimal solution. The proposed approach is shown to achieve superior bit-error-rate (BER) performance by simulations.
基于Pareto最优粒子群算法的STBC-MIMO系统多用户检测
针对空时分组码(STBC)多输入多出(MIMO)系统,提出了一种新的粒子群优化(PSO)多用户检测(MUD)方法。该策略从多目标优化(MO)的角度考虑具有多样性接收的多目标优化(MUD)问题,提出了一种基于Pareto-optimal的pso算法。该方法利用帕累托最优值,有效地挖掘和利用每个接收天线独立的接收信号的信道衰落信息,从而提高启发式搜索最优解的能力。仿真结果表明,该方法具有较好的误码率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信