Area-Optimized Low-Latency Approximate Multipliers for FPGA-based Hardware Accelerators

Salim Ullah, Semeen Rehman, B. Prabakaran, F. Kriebel, Muhammad Abdullah Hanif, M. Shafique, Akash Kumar
{"title":"Area-Optimized Low-Latency Approximate Multipliers for FPGA-based Hardware Accelerators","authors":"Salim Ullah, Semeen Rehman, B. Prabakaran, F. Kriebel, Muhammad Abdullah Hanif, M. Shafique, Akash Kumar","doi":"10.1145/3195970.3195996","DOIUrl":null,"url":null,"abstract":"The architectural differences between ASICs and FPGAs limit the effective performance gains achievable by the application of ASIC-based approximation principles for FPGA-based reconfigurable computing systems. This paper presents a novel approximate multiplier architecture customized towards the FPGA-based fabrics, an efficient design methodology, and an open-source library. Our designs provide higher area, latency and energy gains along with better output accuracy than those offered by the state-of-the-art ASIC-based approximate multipliers. Moreover, compared to the multiplier IP offered by the Xilinx Vivado, our proposed design achieves up to 30%, 53%, and 67% gains in terms of area, latency, and energy, respectively, while incurring an insignificant accuracy loss (on average, below 1% average relative error). Our library of approximate multipliers is open-source and available online at https://cfaed.tudresden.de/pd-downloads to fuel further research and development in this area, and thereby enabling a new research direction for the FPGA community.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"36 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

The architectural differences between ASICs and FPGAs limit the effective performance gains achievable by the application of ASIC-based approximation principles for FPGA-based reconfigurable computing systems. This paper presents a novel approximate multiplier architecture customized towards the FPGA-based fabrics, an efficient design methodology, and an open-source library. Our designs provide higher area, latency and energy gains along with better output accuracy than those offered by the state-of-the-art ASIC-based approximate multipliers. Moreover, compared to the multiplier IP offered by the Xilinx Vivado, our proposed design achieves up to 30%, 53%, and 67% gains in terms of area, latency, and energy, respectively, while incurring an insignificant accuracy loss (on average, below 1% average relative error). Our library of approximate multipliers is open-source and available online at https://cfaed.tudresden.de/pd-downloads to fuel further research and development in this area, and thereby enabling a new research direction for the FPGA community.
基于fpga硬件加速器的区域优化低延迟近似乘法器
asic和fpga之间的架构差异限制了基于asic的近似原理在基于fpga的可重构计算系统中的应用所能获得的有效性能提升。本文提出了一种针对基于fpga的结构定制的新型近似乘法器架构,一种高效的设计方法和一个开源库。与最先进的基于asic的近似乘法器相比,我们的设计提供更高的面积、延迟和能量增益,以及更好的输出精度。此外,与Xilinx Vivado提供的乘法器IP相比,我们提出的设计在面积、延迟和能量方面分别实现了高达30%、53%和67%的增益,同时产生了微不足道的精度损失(平均而言,低于1%的平均相对误差)。我们的近似乘法器库是开源的,可以在https://cfaed.tudresden.de/pd-downloads上在线获得,以推动该领域的进一步研究和发展,从而为FPGA社区提供新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信