{"title":"A new decomposition for multivalued 3 × 3 matrices","authors":"A. Ammar, A. Jeribi, B. Saadaoui","doi":"10.1142/s2010326322500289","DOIUrl":null,"url":null,"abstract":"In this paper, a new concept for a [Formula: see text] block relation matrix is studied in a Banach space. It is shown that, under certain condition, we can investigate the Frobenius–Schur decomposition of relation matrices. Furthermore, we present some conditions which should allow the multivalued [Formula: see text] matrices linear operator to be closable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a new concept for a [Formula: see text] block relation matrix is studied in a Banach space. It is shown that, under certain condition, we can investigate the Frobenius–Schur decomposition of relation matrices. Furthermore, we present some conditions which should allow the multivalued [Formula: see text] matrices linear operator to be closable.