{"title":"Quantum algorithms for predicting the properties of complex materials","authors":"G. Schofield, Y. Saad, J. Chelikowsky","doi":"10.1145/2335755.2335820","DOIUrl":null,"url":null,"abstract":"A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This \"divide and conquer\" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"17 1","pages":"24:1-24:8"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2335755.2335820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This "divide and conquer" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.