{"title":"Axiomatization of non-associative generalisations of Hájek's BL and psBL","authors":"Y. Petrukhin","doi":"10.1080/11663081.2019.1703468","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we consider non-associative generalisations of Hájek's logics BL and psBL. As it was shown by Cignoli, Esteva, Godo, and Torrens, the former is the logic of continuous t-norms and their residua. Botur introduced logic naBL which is the logic of non-associative continuous t-norms and their residua. Thus, naBL can be viewed as a non-associative generalisation of BL. However, Botur has not presented axiomatization of naBL. We fill this gap by constructing an adequate Hilbert-style calculus for naBL. Although, as was shown by Flondor, Georgescu, and Iorgulescu, there are no non-commutative continuous t-norms, Hájek's psBL can be viewed as BL's non-commutative generalisation. We present the logic psnaBL of psnaBL-algebras which can be viewed as naBL's non-commutative generalisation as well as psBL's non-associative generalisation and BL's both non-commutative and non-associative generalisation.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"53 1","pages":"1 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2019.1703468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT In this paper, we consider non-associative generalisations of Hájek's logics BL and psBL. As it was shown by Cignoli, Esteva, Godo, and Torrens, the former is the logic of continuous t-norms and their residua. Botur introduced logic naBL which is the logic of non-associative continuous t-norms and their residua. Thus, naBL can be viewed as a non-associative generalisation of BL. However, Botur has not presented axiomatization of naBL. We fill this gap by constructing an adequate Hilbert-style calculus for naBL. Although, as was shown by Flondor, Georgescu, and Iorgulescu, there are no non-commutative continuous t-norms, Hájek's psBL can be viewed as BL's non-commutative generalisation. We present the logic psnaBL of psnaBL-algebras which can be viewed as naBL's non-commutative generalisation as well as psBL's non-associative generalisation and BL's both non-commutative and non-associative generalisation.